首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrug (NONO-coxib 14) wherein an O2-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (O2-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the CH2OH group of 3-(4-hydroxymethylphenyl)-4-(4-methylsulfonylphenyl)-5H-furan-2-one (12), was synthesized. The prodrug 14 released a low amount of NO (4.2%) upon incubation with phosphate buffer (PBS) at pH 7.4 which was significantly higher (34.8% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum. These incubation studies suggest that both NO and the parent compound 12 would be released from the prodrug 14 upon in vivo cleavage by non-specific serum esterases. The prodrug ester 14 is a selective COX-2 inhibitor that exhibited AI activity (ED50 = 72.2 mmol/kg po) between that of the reference drugs celecoxib (ED50 = 30.9 μmol/kg po) and ibuprofen (ED50 = 327 μmol/kg po). The NO donor compound 14 exhibited enhanced inhibition of phenylephrine-induced vasoconstriction of isolated mesenteric arteries compared with that observed under control conditions. These studies indicate hybrid ester AI/NO donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

2.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

3.
We report here the design, synthesis, and anti-inflammatory activities of a series of perimidine derivatives containing triazole (5a–s). The chemical structures of the synthesized compounds have been assigned on the basis of IR, 1H NMR, 13C NMR, and HRMS spectral analyses. The anti-inflammatory properties of the synthesized perimidine derivatives were evaluated in a lipopolysaccharide (LPS)-stimulated inflammation model. Among the tested compounds, compound 7-(3-methylbenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5h) and compound 7-(2-fluorobenzyl)-7H-[1,2,4]triazolo[4,3-a]perimidine (hereafter referred to as 5n) caused a reduction in the levels of the pro-inflammatory cytokines—tumor necrosis factor (TNF)-α and interleukin (IL)-6—in RAW264.7 cells. The anti-inflammatory potential of compounds 5h and 5n was also evaluated in vivo in a xylene-induced ear inflammation model. Compound 5n showed the most potent anti-inflammatory activity with an inhibition of 49.26% at a dose of 50 mg/kg. This activity is more potent than that of the reference drug ibuprofen (28.13%), and slightly less than that of indometacin (49.36%). To further elucidate the mechanisms underlying these inhibitory effects, LPS-induced nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation were studied. The results of western blotting showed that the extract obtained from compound 5n inhibited NF-κB (p65) activation and MAPK (extracellular signal-regulated kinase (ERK) and p38) phosphorylation in a dose-dependent manner. Moreover, the results of a docking study of compound 5n into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of compound 5n on COX-2 antibody was showed it could significantly inhibit COX-2 activity.  相似文献   

4.
A novel group of O2-acetoxymethyl-protected diazeniumdiolate-based non-steroidal anti-inflammatory prodrugs (NONO-NSAIDs) were synthesized by esterifying the carboxylate group of aspirin, ibuprofen, or indomethacin with O2-acetoxymethyl 1-[N-(2-hydroxyethyl)-N-methylamino]diazeniumdiolate. The resulting nitric oxide (*NO)-releasing prodrugs (7-9) did not exhibit in vitro cyclooxygenase (COX) inhibitory activity against the COX-1 and COX-2 isozymes (IC50s>100 microM). In contrast, prodrugs 7 and 8 significantly decreased carrageenan-induced rat paw edema showing enhanced in vivo anti-inflammatory activities (ID50's=552 and 174 micromol/kg, respectively) relative to those of the parent NSAIDs aspirin (ID50=714 micromol/kg) and ibuprofen (ID50=326 micromol/kg). The rate of porcine liver esterase-mediated *NO release from prodrugs 7-9 (2 mol of *NO/mol of test compound in 0.6-6.5 min) was substantially higher compared to that observed without enzymatic catalysis (about 1 mol of *NO/mol of test compound in 40-48 h). These incubation studies suggest that both *NO and the parent NSAID would be released upon in vivo activation (hydrolysis) by esterases. Data acquired in an in vivo ulcer index (UI) assay showed that NONO-aspirin (UI=0.8), NONO-indomethacin (UI=1.3), and particularly NONO-ibuprofen (UI=0) were significantly less ulcerogenic compared to the parent drugs aspirin (UI=57), ibuprofen (UI=46) or indomethacin (UI=34) at equimolar doses. The release of aspirin and *NO from the NONO-aspirin (7) prodrug constitutes a potentially beneficial property for the prophylactic prevention of thrombus formation and adverse cardiovascular events such as stroke and myocardial infarction.  相似文献   

5.
A series of N-(2-(3,4,5-trimethoxybenzyl)-benzoxazole-5-yl)benzamide derivatives (3a–3n) was synthesized and evaluated for its in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 µM), were evaluated in vivo for their anti-inflammatory and ulcerogenic potential. Out of the fourteen newly synthesized compounds; 3b, 3d, 3e, 3h, 3l and 3m were found to be most potent COX-2 inhibitors in in vitro enzymatic assay with IC50 in the range of 0.14–0.69 µM. In vivo anti-inflammatory activity of these six compounds (3b, 3d, 3e, 3h, 3l and 3m) was assessed by carrageenan induced rat paw edema method. The compound 3b (79.54%), 3l (75.00%), 3m (72.72%) and 3d (68.18%) exhibited significant anti-inflammatory activity than standard drug ibuprofen (65.90%). Ulcerogenic activity with histopathological studies was performed, and the screened compounds demonstrated significant gastric tolerance than ibuprofen. Molecular Docking study was also performed with resolved crystal structure of COX-2 to understand the interacting mechanisms of newly synthesized inhibitors with the active site of COX-2 enzyme and the results were found to be in line with the biological evaluation studies of the compounds.  相似文献   

6.
As a part of a directed program for development of new active agents, novel heterocyclic derivatives with antipyrine and pyrazolone moieties -incorporated in- have been designed and synthesized. Starting with 4-arylidene-3-methyl-1-phenyl-5-pyrazolone derivative 2a,b novel Mannich bases derivatives have been synthesized and biologically evaluated for their anti-inflammatory activity. Furthermore, the activity of such compounds has been tested interestingly as COX-1 and COX-2 inhibitors. Structure elucidation of the synthesized compounds was attained by the use of elemental analysis, IR, 1H NMR, 13C NMR, and Mass spectrometry techniques. Compounds 3b, 3d and 4b represent the high % inhibition values for both COX-1 and COX-2. On the other hand, compound 8 showed little selectivity against COX-2 while compound 10 showed good selectivity against COX-1 only. Structure activity relationship has been discussed and the results were confirmed by molecular docking calculations.  相似文献   

7.
New 6- (or 6,7-) substituted 2-(hydroxyl substituted phenyl)quinolin-4-one derivatives were synthesized and screened for antiproliferative effects against cancer cell lines. Structure–activity relationship correlations were established and the most promising compound 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidin-1-ylquinolin-4-one (6h) exhibited strong inhibitory activity against various human cancer cell lines, particularly non-small cell lung cancer NCI-H522. Additional studies suggested a mechanism of action resembling that of the antimitotic drug vincristine. The presence of a C-ring OH group in 6h will allow this compound to be converted readily to a water soluble and physicochemically stable hydrophilic prodrug. Compound 6h is proposed as a new anticancer lead compound.  相似文献   

8.
A novel series of 1,2,3 triazole compounds possessing 1,2,4 oxadiazole ring were efficiently synthesized. Synthesized compounds were evaluated for their in vitro antifungal activities using standard cup plate method. SAR for the series has been developed by comparing their MIC values with miconazole and fluconazole. Compound 11a from the series was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus flavus (MIC-10) whereas equipotent with miconazole against Fusarium oxysporum (MIC-25) and Aspergillus niger (MIC-12.5). Also compound 11h was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus niger (MIC-10) and equipotent with miconazole against Fusarium oxysporum. Compound 11h was equipotent with fluconazole against Aspergillus niger (MIC-10).  相似文献   

9.
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached −11.27 Kcal*mol−1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics.  相似文献   

10.
6-(2, 3, 4-Trihydroxy-3-methylbutylamino)purine, isolated from the oxidation of cis- zeatin with potassium permanganate, has been identified by 1H NMR and high resolution mass spectrometry. Its activity as a cell division factor, when examined by the soybean callus assay in the concentration range 10?11–10?5 M, equalled that of the parent compound.  相似文献   

11.
A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC50 = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.  相似文献   

12.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs 12a-b) wherein an O(2)-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11, O(2)-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the bromomethyl group of 5-(4-bromomethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (9a), and its methanesulfonyl analog (9b), were synthesized. The diazen-1-ium-1,2-diolate compounds 12a-b released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (6.1-8.2% range). In comparison, the percentage NO released was significantly higher (76-77% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs 12a-b were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (10a), and its methanesulfonyl analog (10b), would be released from the parent NONO-coxib 12a or 12b upon in vivo cleavage by non-specific serum esterases. The hydroxymethyl compounds 10a-b were weak inhibitors of the cyclooxygenase-1 (COX-1) and COX-2 isozymes (IC(50)=3.7-10.5 microM range). However, the hydroxymethyl compounds 10a-b and the parent NONO-coxibs 12a-b exhibited good AI activities (ED(50)=76.7-111.6 micromol/kg po range) that were greater than that exhibited by the reference drugs aspirin (ED(50)=710 micromol/kg po) and ibuprofen (ED(50)=327 micromol/kg po), but less than that of celecoxib (ED(50)=30.9mumol/kg po). These studies indicate hybrid ester AI/NO-donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

13.
N,N′-Dialkylaminoalkylcarbonyl (DAAC) and aminoalkylcarbonyl (AAC) prodrugs of phenolic drugs acetaminophen (APAP) and naltrexone (NTX) are reported. The effects of incorporation of a basic amine group into the promoiety of an acyl prodrug of a phenolic drug on its skin permeation properties are also presented. DAAC-APAP prodrugs were synthesized via a three-step procedure starting with haloalkylcarbonyl esters which were reacted with five different amines: dimethylamine, diethylamine, dipropylamine, morpholine, and piperidine. The spacing between the amino group and the carbonyl group of the acyl group was 1-3 CH2. After the hydrolysis of the ester, the carboxylic acid product was subsequently coupled with the parent drug via a dicyclohexyl carbodiimide (DCC) mediated coupling to yield the DAAC-APAP-HCl prodrugs in excellent yields. The AAC prodrugs were synthesized using commercially available Boc-protected amino acids using DCC or EDCI as coupling agents. The yields of the prodrugs synthesized using these two different methods have been compared. Half-lives (t1/2) of a few members of the DAAC and AAC series were measured in buffer (pH 6.0, 20 mM). The members evaluated in hydrolysis experiments exhibit a t1/2 range of 15-113 min. Among AAC-APAP prodrugs, the isopropyl group in valinate-APAP-HCl exerted a steric effect that increased the t1/2 value for this prodrug compared to alaninate-APAP-HCl or prolinate-APAP-HCl. The 2-morpholinylacetate-APAP prodrug was able to achieve twice the flux of APAP in in vitro diffusion cell experiments through hairless mouse skin.  相似文献   

14.
A series of 4-aryl-5-(4-(methylsulfonyl)phenyl)-2-alkylthio and 2-alkylsulfonyl-1H-imidazole derivatives were synthesized. All compounds were tested in human blood assay to determine COX-1 and COX-2 inhibitory potency and selectivity. Among the synthesized compounds, 2-alkylthio series were more potent and selective than 2-sulfonylalkyl derivatives. In molecular modeling, interaction of 2-sulfonylalkyl moiety with Arg120 in COX-1 and an extra hydrogen bond with Tyr341 in COX-2 increased the residence time of ligands in the active site in 2-sulfonylalkyl and 2-alkylthio analogs, respectively.  相似文献   

15.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

16.
A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein.  相似文献   

17.

Background

Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.

Methodology/Principal Findings

COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM).

Conclusions/Significance

Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.  相似文献   

18.
A series of 5-imino-4-thioxo-2-imidazolidinone derivatives with different substituents at N1 and N3 was synthesized with high yield and excellent purity by the reaction of different N-arylcyanothioformamide derivatives with isocyanate derivatives. Treatment 5-imino-4-thioxo-2-imidazolidinone derivatives with acidic medium afforded 4-thioxoimidazolidin-2,5-dione derivatives. The structures of the obtained products were established based on spectroscopic IR, 1H NMR, 13C NMR, 1H, 1H-COSY, HSQC and elemental analyses. The anti-inflammatory activity of the synthesized compounds through the carrageenan-paw edema model as well as in vitro COX-1 and COX-2 inhibition assay were evaluated where most of the synthesized compounds showed significant anti-inflammatory activity. Mostly, all of our synthesized compounds have greater activity more than celecoxib toward both cyclooxygenase enzymes. All of the tested compounds (except one compound) exhibited IC50 valves for COX-2 ranged from 0.001 × 10−3 to 0.827 × 10−3 µM while the reference drug has IC50 40.0 × 10−3 µM. Furthermore, the analgesic activity of such compounds was also determined. Molecular modeling study was also conducted to rationalize the potential as anti-inflammatory agents of our synthesized compounds by predicting their binding modes, binding affinities and optimal orientation at the active site of the COX enzymes.  相似文献   

19.
In this study, eighteen new isoxazolo[4,5-d]pyridazin-4(5H)-one derivatives possessing either a 1,3,4-thiadiazole or a 1,2,4-triazole-5-thione moiety were synthesized and tested for anti-inflammatory activity in vitro (COX-1/COX-2, 5-LOX) and in vivo (rat paw edema assay). Compounds 15, 16, 25, 26 and 28-30 showed dual COX-2 (IC(50)'s in the 2.1-10.9 μM range), and 5-LOX (IC(50)'s in the 6.3-63.5 μM range) inhibitory activity. When administered orally to rats, dual COX-2/5-LOX inhibitors showed higher anti-inflammatory activity in vivo (30-45% reduction of the inflammatory response) than the reference drug ibuprofen (18%). Among dual COX-2/5-LOX inhibitors, the most potent compound (28) exhibited the best anti-inflammatory profile by inhibiting both COX-2 (IC(50)=2.1 μM) and 5-LOX (IC(50)=6.3 μM) enzymes. We investigated the binding interactions of compound 28 by an enzyme-ligand molecular modeling (docking) studies, which showed favorable binding interactions in both COX-2 and 5-LOX active sites. Furthermore, the dual acting COX-2/5-LOX compound 28 exhibited a superior gastrointestinal safety profile (ulcer index=0.25) compared to the reference drug ibuprofen (UI=7.0) when administered orally at the same molar dose. These observations suggest that isoxazolo[4,5-d]pyridazin-4(5H)-one analogs represent a new scaffold to design potent, effective, and safe anti-inflammatory agents possessing dual COX-2/5-LOX inhibitory activity.  相似文献   

20.
ObjectivesThe present research focuses on the in vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of twelve heteroleptic metal complexes of the general formulae [Ag(L1−4)(ibu)] (14) and [M(L1−4)(ibu)2] (512), where L1−4 = 2-(1-(4-substitutedphenyl)ethylidene)-N-methylhydrazinecarbothioamide, ibu = non-steroidal anti-inflammatory drug (ibuprofen), and M = Cu(II) and Ni(II).MethodsVarious spectroscopic techniques were used to authenticate the structure of the synthesized complexes. UV-Vis and cyclic voltammetry techniques were used to analyse the stability and the reducing ability of the complexes. In vitro anti-proliferative studies by MTT assay, apoptotic behaviour and cellular uptake studies were investigated followed by the in silico interaction with ribonucleotide reductase (RNR) enzyme.ResultsThe spectral studies predicted distorted tetrahedral geometry around silver(I) ion and distorted octahedral geometry around nickel(II) and copper(II) ions. The reducing ability of the copper(II) complexes was analysed using ascorbic acid by UV-Vis and cyclic voltammetry techniques, which authenticate the reducing ability of the complexes and the possible interactions within the cells. The in vitro anti-proliferative activity of the synthesized complexes against three cancerous (estrogen positive (MCF-7), estrogen negative (MDA-MB-231) and pancreatic (PANC-1)) and one normal (MCF-10a) cell lines by MTT assay showed enhanced activity for copper(II) complexes 11 and 12 containing the hydrophobic substituents. The apoptotic and cellular uptake studies showed that the complex 12 is readily taken up by PANC-1 cell lines and induces ROS-mediated mitochondrial and caspase-dependent apoptosis. The in silico studies indicated hydrogen bonding, hydrophobic and π-pair (π–π, π–σ and π–cation) interactions between the complexes and the ribonucleotide reductase (RNR) enzyme. The in silico pharmacokinetics studies of the complexes predicted the drug-likeness characteristics of the complexes.ConclusionThe synthesized complexes are found to be less toxic to normal cells and inhibit the growth of cancerous cells by inducing mitochondrial-mediated and caspase dependent apoptotic pathway in PANC-1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号