首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently some fms-like tyrosine kinase 3 (FLT3) inhibitors have shown good efficacy in acute myeloid leukemia (AML) patients. In an effort to develop anti-leukemic drugs, we investigated quinolinone derivatives as novel FLT3 inhibitors. Two substituted quinolinones, KR65367 and KR65370 were subjected to FLT3 kinase activity assay and showed potent inhibition against FLT3 kinase activity in vitro, with IC50 of 2.7 and 0.57 nM, respectively. As a measure of selectivity, effects on the activity of other kinases were also tested. Both compounds have negligible activity against Met, Ron, epidermal growth factor receptor, Aurora A, Janus kinase 2, and insulin receptor; with IC50 greater than 10 μM. KR compounds showed strong growth inhibition in MV4;11 AML cells and increased the apoptotic cell death in flow cytometric analyses. A decrease in STAT5 phosphorylation by KR compounds was observed in MV4;11 cells. Furthermore, in vitro evaluation of compounds structurally related to KR65367 and KR65370 showed a good structure-activity relationship.  相似文献   

2.
Acute myeloid leukemia (AML) is characterized by fast progression and low survival rates, in which Fms-like tyrosine kinase 3 (FLT3) receptor mutations have been identified as a driver mutation in cancer progression in a subgroup of AML patients. Clinical trials have shown emergence of drug resistant mutants, emphasizing the ongoing need for new chemical matter to enable the treatment of this disease. Here, we present the discovery and topological structure-activity relationship (SAR) study of analogs of isoquinolinesulfonamide H-89, a well-known PKA inhibitor, as FLT3 inhibitors. Surprisingly, we found that the SAR was not consistent with the observed binding mode of H-89 in PKA. Matched molecular pair analysis resulted in the identification of highly active sub-nanomolar azaindoles as novel FLT3-inhibitors. Structure based modelling using the FLT3 crystal structure suggested an alternative, flipped binding orientation of the new inhibitors.  相似文献   

3.
4.
BackgroundAcute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.MethodsWe screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups.ResultsEight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups.ConclusionThis study constitutes the first report from Pakistan reporting significant molecular mutation analysis of RUNX1 and FLT3 genes including FLT3 expression evaluation with follow-up. This provides an insight that aforementioned mutations are markers of poor prognosis but the study with a large AML cohort will be useful to further investigate their role in disease biology of AML.  相似文献   

5.
6.
目的 探讨RNAi技术治疗急性髓系白血病(acute myeloid leukemia,AML)对p38信号通路的影响。方法 以NC(HL-60细胞)和HK(含siRNA-FLT3的阴性对照的HL-60细胞)、F1(实验组,含siRNA-FLT3的HL-60细胞,本实验室已实验证明对FLT3有干扰作用)三种细胞株为研究对象,分为药物组(信号通道抑制作用组)和对照组(未加信号通道抑制剂)。通过RT-PCR和Western blot检测对照组和药物组p38 mRNA水平和蛋白表达的变化,MTT和FCM分别测定细胞活性和细胞凋亡率的变化。结果 药物组、对照组组内比较:以NC做参照,F1能诱导p38 mRNA水平和蛋白表达下降、从而抑制细胞的增殖,促进细胞凋亡,差异有统计学意义(均P 0.05);与对照组相比,药物组p38 mRNA水平和蛋白表达下降,细胞活性下降,细胞凋亡率增加,差异有统计学意义(均P<0.05);药物组的F1与药物组的NC、药物组的F1与对照组的F1分别比较,差异有统计学意义(均P s<0.05)。结论 p38信号通路是RNAi技术干扰HL-60细胞FLT3基因表达引起细胞凋亡的途径之一,SB203580(P38 MAPK抑制剂)对其有协同增效作用。  相似文献   

7.
Fms-like tyrosine kinase 3 (FLT3) has been verified as a therapeutic target for acute myeloid leukaemia (AML). In this study, we report a series of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazol-5-yl benzamide and phenyl urea derivatives as potent FLT3 inhibitors based on the structural optimisation of previous FLT3 inhibitors. Derivatives were synthesised as benzamide 8a–k, 8n–z, and phenyl urea 8l–m, with various substituents. The most potent inhibitor, 8r, demonstrated strong inhibitory activity against FLT3 and FLT3 mutants with a nanomolar IC50 and high selectivity profiles over 42 protein kinases. In addition, these type II FLT3 inhibitors were more potent against FLT3 mutants correlated with drug resistance. Overall, we provide a theoretical basis for the structural optimisation of novel benzimidazole analogues to develop strong inhibitors against FLT3 mutants for AML therapeutics.  相似文献   

8.
9.
STAT3 signaling pathway has been validated as a vital therapeutic target for cancer therapy. Based on the novel STAT3 inhibitor of a benzyloxyphenyl-methylaminophenol scaffold hit (1) discovered through virtual screening, a series of analogues had been designed and synthesized for more potent inhibitors. The preliminary SAR had been discussed and the unique binding site in SH2 domain was predicted by molecular docking. Among them, compounds 4a and 4b exhibited superior activities than hit compound (1) against IL-6/STAT3 signaling pathway with IC50 values as low as 7.71 μM and 1.38 μM, respectively. Compound 4a also displayed potent antiproliferative activity against MDA-MB-468 cell line with an IC50 value of 9.61 μM. We believe that these benzyloxyphenyl-methylaminophenol derivatives represent a unique mechanism for interrogating STAT3 as well as a potential structure type for further exploration.  相似文献   

10.
Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cell. In AML, a mutation in FLT3 is commonly occurs and is associated with poor prognosis. We have previously reported that thieno[2,3-d]pyrimidine derivative compound 1 exhibited better antiproliferative activity against MV4-11 cells which harbor mutant FLT3 than AC220, which is a well-known FLT3 inhibitor, and has good microsomal stability. However, compound 1 had poor solubility. We then carried out further structural modification at the C2 and the C6 positions of thieno[2,3-d]pyrimidine scaffold. Compound 13b, which possesses a thiazole moiety at the C2 position, exhibited better antiproliferative activity than compound 1 and showed increased solubility and moderate microsomal stability. These results indicate that compound 13b could be a promising potential FLT inhibitor for AML chemotherapy.  相似文献   

11.
Viral infectivity factor (Vif) is one of the accessory protein of human immunodeficiency virus type I (HIV-1) that inhibits host defense factor, APOBEC3G (A3G), mediated viral cDNA hypermutations. Previous work developed a novel Vif inhibitor 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide (1) with strong antiviral activity. Through optimizations on the two side branches, a series of compound 1 derivatives (218) were designed, synthesized and tested in vitro for their antiviral activities. The biological results showed that compound 5 and 16 inhibited the virus replication efficiently with EC50 values of 9.81 and 4.62 μM. Meanwhile, low cytotoxicities on H9 cells were observed for the generated compounds by the MTT assay. The structure–activity relationship of compound 1 was preliminarily clarified, which gave rise to the development of more potent Vif inhibitors.  相似文献   

12.
A series of simplified ring-opened resorcylic acid lactone (RAL) derivatives were conveniently synthesized to target FLT3 and its mutants either irreversibly or reversibly. Our design of covalent FLT3 inhibitors is based on cis-enone RALs (e.g., L-783,277) that have a β-resorcylic acid as the core structure. The designed compounds contain three types of Michael acceptors (acrylamide, vinylsulfonamide and maleimide) as potential covalent traps of a cysteine residue at the binding site of kinases. A variety of functional substitutions were also introduced to maximize the binding interactions. Biological evaluations revealed that compound 17, despite the presence of a highly reactive maleimide Michael acceptor, is a potent covalent FLT3 inhibitor which shows some specificity in cellular assays. On the other hand, compounds 2 and 6 containing acrylamide or vinylsulfonamide groups are reversible towards FLT3 binding, and are potent and selective inhibitors of mutant FLT3-ITD versus wt-FLT3. They also inhibit cell proliferation in FLT3-ITD expressing cell line MV-4-11 as compared to wt-FLT3 expressing cell line THP-1 and non-FLT3 cell lines (K562, HL60 and Hek-293T).  相似文献   

13.
Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of myeloid precursors arrested in their maturation, creating a diverse disease entity with a wide range of responses to historically standard treatment approaches. While signifi cant progress has been made in characterizing and individualizing the disease at diagnosis to optimally inform those affected, progress in treatment to reduce relapse and induce remission has been limited thus far. In addition to a brief summary of the factors that shape prognostication at diagnosis, this review attempts to expand on the current therapies under investigation that have shown promise in treating AML, including hypomethylating agents, gemtuzumab ozogamicin, FLT3 tyrosine kinase inhibitors, antisense oligonucleotides, and other novel therapies, including aurora kinases, mTOR and PI3 kinase inhibitors, PIM kinase inhibitors, HDAC inhibitors, and IDH targeted therapies. With these, and undoubtedly many others in the future, it is the hope that by combining more accurate prognostication with more effective therapies, patients will begin to have a different, and more complete, outlook on their disease that allows for safer and more successful treatment strategies.  相似文献   

14.
Forkhead box M1 (FoxM1) drives cell cycle progression and the prevention of growth arrest and is over-expressed in many human malignancies. However, the characteristics of FoxM1 in acute myeloid leukemia (AML) are not clearly understood. We investigated the expression level of FoxM1 and analyzed the correlation of FoxM1 expression with AML patient characteristics and prognoses. Changes in FoxM1 expression were detected after MV4–11 cells, which have an internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 gene (FLT3-ITD), and control THP1 cells (encoding wild-type FLT3) were treated with the FLT3 receptor tyrosine kinase inhibitor AC220 (quizartinib) or FLT3 ligand (FL). Finally, we determined the apoptosis rates after the addition of the FoxM1 inhibitor thiostrepton (TST) to AML cells with or without FLT3-ITD. The expression of FoxM1 in AML patients was correlated with the presence of FLT3-ITD, genetic groups, and possibly overall survival. Inhibition of FLT3-ITD by AC220 down-regulated FoxM1 expression in MV4–11 cells, and stimulation of FLT3 by FL up-regulated FoxM1 expression in MV4–11 and THP1 cells. TST induced the apoptosis of MV4–11 and THP1 cells in a dose-dependent manner. Thus, FoxM1 is a potential prognostic marker and a promising therapeutic target in AML.  相似文献   

15.
JAKs inhibitors were widely applied in the treatment of immunodeficiency diseases, inflammation and cancers. We designed and synthesized a novel series of 4-aminopyrazole derivatives, which showed inhibitory potency against various JAKs. The in vitro protein kinase inhibition experiment indicated that compounds 17k, 17l, 17m and 17n could inhibit JAKs effectively. Among them, compound 17m possessed the highest protein kinase inhibitory rates (%) at 10 μM, which were 97, 96 and 100 to JAK1, JAK2 and JAK3, respectively. Further evaluation revealed that the IC50 values of 17m against JAK1, JAK2 and JAK3 were 0.67 μM, 0.098 μM and 0.039 μM, respectively. Moreover, western blotting results showed compound 17m could inhibit the phosphorylation of JAK2 in Hela cells effectively. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

16.
In the studied a series novel of lazabemide derivatives were designed, synthesized and evaluated as inhibitors of monoamine oxidase (MAO-A or MAO-B). These compounds used lazabemide as the lead compound, and the chemistry structures were modified by used the bioisostere and modification of compound with alkyl principle. The two types of inhibitors (inhibition of MAO-A and inhibition of MAO-B) were screened by inhibition activity of MAO. In vitro experiments showed that compounds 3a, 3d and 3f had intensity inhibition the biological activity of MAO-A, while compounds 3i and 3m had intensity inhibition the biological activity of MAO-B. It could be seen from the data of inhibition activity experiments in vitro, that the compound 3d was IC50?=?3.12?±?0.05?μmol/mL of MAO-A and compound 3m was IC50?=?5.04?±?0.06?μmol/mL. In vivo inhibition activity experiments were conducted to evaluate the inhibitory activity of compounds 3a, 3d, 3f, 3i and 3m by detecting the contents of 5-HT, NE, DA and activity of MAO-A and MAO-B in plasma and brain tissue. In vivo inhibition activity evaluation results showed that the compounds 3a, 3d, 3f, 3i and 3m had increased the contents of 5-HT, NE and DA in plasma and brain tissues. Meanwhile, the determination results activity of MAO in plasma and brain tissue showed that the compounds 3a, 3d, and 3f had a significant inhibitory effect on the activity of MAO-A, while the compounds 3i and 3m showed inhibitory effect on the activity of MAO-B. This study provided a new inhibitors for inhibiting of MAO activity.  相似文献   

17.
With the increasingly acquired resistance, relapse and side effects of known marketed BRAFV600E inhibitors, it’s significant to design the more effective and novel drugs. In this study, a series of novel pyrazole derivatives containing acetamide bond had been designed and synthesized on the basis of analysis of the endogenous ligands extracted from the known B-Raf co-crystals in the PDB database. Then, the compounds were evaluated for biological activities as potential BRAFV600E inhibitors. The bioassay results in vitro against three human tumor cell lines revealed that some of the compounds showed very impressed antiproliferative property. Among them, the compound 5r with IC50 values of 0.10?±?0.01?μM against BRAFV600E and 0.96?±?0.10?μM against A375 cell line, showed the most potent inhibitory effect, compared with the positive-controlled agents vemurafenib (IC50?=?0.04?±?0.004?μM for BRAFV600E, IC50?=?1.05?±?0.10?μM against A375). Further investigation confirmed that the compound 5r could induce A375 cell apoptosis, induce A375 cell death through changing mitochondrial membrane potential, and result in A375 cell arrest at the G1 phase of the cell cycle. Docking simulations results indicated that the compound 5r could bind tightly at the BRAFV600E active site. Meanwhile, 3D-QSAR model suggested that these compounds may be potential anticancer inhibitors. Overall, the article provided some new molecular scaffolds for the further BRAFV600E inhibitors.  相似文献   

18.
A series of 4-aryl-5-aminoalkyl-thiazole-2-amines were designed and synthesized, and their inhibitory activity on ROCK II was screened by enzyme-linked immunosorbent assay (ELISA). The results showed that 4-aryl-5-aminomethyl-thiazole-2-amines derivatives had certain ROCK II inhibitory activities. Compound 10l showed ROCK II inhibitory activity with IC50 value of 20 nM.  相似文献   

19.
The effective treatment for dengue virus infection continues to be a challenge. We herein reported our continued SAR exploration on the spiropyrazolopyridone scaffold. Introducing different substituents at the 3́- or 5́-site of the pyrazolopyridone core or moving the benzyl chain to the adjacent nitrogen led to a significant loss of potency on DENV-2. While a narrow range of substitutions were tolerated at the para-position of the phenyl ring, di-substitution on the phenyl ring is beneficial for DENV-2 potency and has variable influences on DENV-3 potency depending on the exact compound. Among these molecules, compounds 22 (JMX0376) with 4-chloro-3-fluorobenzyl and 24 (JMX0395) with 2,4-bis(trifluoromethyl)benzyl showed the most potent and broadest inhibitory activities against DENV-1 to −3 with nanomolar to low micromolar EC50 values.  相似文献   

20.
As part of our ongoing efforts to develop reversible inhibitors of LSD1, we identified a series of 4-(pyrrolidin-3-yl)benzonitrile derivatives that act as successful scaffold-hops of the literature inhibitor GSK-690. The most active compound, 21g, demonstrated a Kd value of 22 nM and a biochemical IC50 of 57 nM. In addition, this compound displayed improved selectivity over the hERG ion channel compared to GSK-690, and no activity against the related enzymes MAO-A and B. In human THP-1 acute myeloid leukaemia cells, 21g was found to increase the expression of the surrogate cellular biomarker CD86. This work further demonstrates the versatility of scaffold-hopping as a method to develop structurally diverse, potent inhibitors of LSD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号