首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nimesulide is a nonsteroidal anti-inflammatory drug possessing analgesic and antipyretic properties. This drug is considered a selective cyclooxygenase-2 (COX-2) inhibitor and, more recently, has been associated to antitumor activity. Thus, numerous works have been developed to modify the nimesulide skeleton aiming to develop new and more potent and selective COX-2 inhibitors as well as potential anticancer agents. This review intends to provide an overview on analogues of nimesulide, including the general synthetic approaches used for their preparation and structural diversification and their main anti-inflammatory and/or antitumor properties.  相似文献   

2.
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.  相似文献   

3.
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.  相似文献   

4.
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major impediment for clinical cancer therapy. 19 novel aromatic amides with triazole-core as MDR reversal agents were designed and synthesized via click chemistry to reverse MDR. Among them, compound 42 was identified as the most promising candidate with high potency (EC50 = 78.1 ± 5.4 nM), low cytotoxity (SI > 1282) and persistent duration in reversing doxorubicin (DOX) resistance in K562/A02 cells. 42 also enhanced the potency of other P-gp associated cytotoxic agents with different structures. In further study, remarkably increased intracellular accumulation of Rh123 and DOX in K562/A02 cells was achieved by compound 42, while CYP3A4 activity had no change by compound 42. These results indicate that compound 42 as a relatively safe modulator of P-gp-mediated MDR has good potential for further development.  相似文献   

5.
Histone deacetylase (EC 3.5.1.98 – HDAC) is an amidohydrolase involved in deacetylating the histone lysine residues for chromatin remodeling and thus plays a vital role in the epigenetic regulation of gene expression. Due to its aberrant activity and over expression in several forms of cancer, HDAC is considered as a potential anticancer drug target. HDAC inhibitors alter the acetylation status of histone and non-histone proteins to regulate various cellular events such as cell survival, differentiation and apoptosis in tumor cells and thus exhibit anticancer activity. Till date, four drugs, namely Vorinostat (SAHA), Romidepsin (FK-228), Belinostat (PXD-101) and Panobinostat (LBH-589) have been granted FDA approval for cancer and several HDAC inhibitors are currently in various phases of clinical trials, either as monotherapy and/or in combination with existing/novel anticancer agents. Regardless of this, today scientific efforts have fortified the quest for newer and novel HDAC inhibitors that show isoform selectivity. This review focuses on the chemistry of the molecules of two classes of HDAC inhibitors, namely short chain fatty acids and hydroxamic acids, investigated so far as novel therapeutic agents for cancer.  相似文献   

6.
We report the design, synthesis and biological evaluation of 17 novel 8-aryl-2-morpholino-3,4-dihydroquinazoline derivatives based on the standard model of DNA-PK and PI3K inhibitors. Novel compounds are sub-divided into two series where the second series of five derivatives was designed to have a better solubility profile over the first one. A combination of in vitro and in silico techniques suggested a plausible synergistic effect with doxorubicin of the most potent compound 14d on cell proliferation via DNA-PK and poly(ADP-ribose) polymerase-1 (PARP-1) inhibition, while alone having a negligible effect on cell proliferation.  相似文献   

7.
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik–Fields, Mannich, Arbuzov, Michaelis–Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs.  相似文献   

8.
Meagre and suboptimal therapeutic response along with the side effect profile associated with the existing anticancer therapy have necessitated the development of new therapeutic modalities to curb this disease. Bearing in mind the current scenario, a series of 1,2,3-triazole linked 3-(1,3-diphenyl-1H-pyrazol-4-yl)acrylates was synthesized following a multi-step reaction scheme. Initial screening for anticancer potential was done by in vitro sulforhodamine B assay against four human cancer cell lines- MCF-7 (breast), A549 (Lung) and HCT-116 and HT-29 (Colon). On evaluation, several compounds showed promising growth inhibition against all the cell lines, particularly compounds 6e, 6f and 6n. Among them, compound 6f displayed IC50 values of 1.962, 3.597, 1.764 and 4.496 µM against A549, HCT-116, MCF-7 and HT-29 cell lines respectively. Furthermore, the apoptosis inducing potential of the compounds was determined by Hoechst staining and DNA fragmentation assay. Colony formation inhibition assay was also carried out to determine the long term cytotoxic potential of the molecules. Moreover, compounds 6e, 6f and 6n were also evaluated for anti-inflammatory activity by protein albumin denaturation assay and red blood cell membrane stabilizing assay.  相似文献   

9.
10.
Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app – acetyl-CoA and (kcat/Km)app – acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.  相似文献   

11.
Combretastatin A-4 (CA-4) is a highly cytotoxic natural product and several derivatives have been prepared which underwent clinical trial. These investigations revealed that the cis-stilbene moiety of the natural product is prone to undergo cis/trans isomerization under physiological conditions, reducing the overall activity of the drug candidates. Herein, we report the preparation of cis-restrained carbocyclic analogs of CA-4. The compounds, which differ by the size and hybridization of the carbocyclic ring have been evaluated for their cytotoxic properties and their ability to inhibit tubulin polymerization. Biological data, supported by molecular docking studies, identified cyclobutenyl and cyclobutyl derivatives of the natural product as highly promising drug candidates.  相似文献   

12.
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256 μM and periods of treatment of 24, 48 and 72 h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64–70 μM) for the MDA-MB-231 cell line after 24–48 h of treatment, but they were more selective and much more potent (IC50 4–16 μM) for the MCF-7 cells after 48 h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72 h of treatment (IC50 1–2 μM), probably as the result of slow hydrolysis of their methyl ester functions.  相似文献   

13.
Quorum sensing (QS) is a cell-to-cell signaling communication system that controls the virulence behavior of a broad spectrum of bacterial pathogens, participating also in the development of biofilms, responsible of the antibiotic ineffectiveness in many infections. Therefore, QS system is an attractive target for antimicrobial therapy. In this study, we compare the effect of seven structurally related coumarins against bacterial growth, biofilm formation and elastase activity of Pseudomonas aeruginosa. In addition, the anti-pathogenic capacity of the seven coumarins was evaluated on the wild type and the biosensor strain of Chromobacterium violaceum.The comparative study of coumarins showed that molecules with hydroxyl groups on the aromatic ring displayed higher activity on the inhibition of biofilm formation of P. aeruginosa over coumarins with substituents in positions 3 and 4 or without the double 3,4-bond. These 3 or 4-hydroxylated positions caused a decrease in the anti-biofilm activity obtained for coumarin. However, the hydroxyl group in position 3 of the pyrone ring was important for the inhibition of C. violaceum QS and elastolytic activity of P. aeruginosa. The effects observed were active independently of any effect on growth. According to our results, coumarin and its hydroxylated derivatives represent an interesting group of compounds to use as anti-virulence agents against the human pathogen P. aeruginosa.  相似文献   

14.
We herein report the design, synthesis and molecular docking studies of 2,4-thiazolidinedione derivatives containing benzene sulphonyl group which are docked against the Peroxisome Proliferator Activated Receptor (PPARγ) target. Compound 7p was most effective in lowering the blood glucose level as compared to standard drugs pioglitazone and rosiglitazone. Compound 7p exhibited potent PPAR-γ transactivation of 61.2% with 1.9 folds increase in gene expression. In molecular docking studies 7p showed excellent interactions with amino acids TYR 473, SER 289, HIE 449, TYR 327, ARG 288, MET 329 and LEU 228. Compound 7p did not cause any damage to the liver without any noteworthy weight gain and may be considered as promising candidates for the development of new antidiabetic agents.  相似文献   

15.
Indole is a versatile pharmacophore, a privileged scaffold and an outstanding heterocyclic compound with wide ranges of pharmacological activities due to different mechanisms of action. It is an superlative moiety in drug discovery with the sole property of resembling different structures of the protein. Plenty of research has been taking place in recent years to synthesize and explore the various therapeutic prospectives of this moiety. This review summarizes some of the recent effective chemical synthesis (2014–2018) for indole ring. This review also emphasized on the structure–activity relationship (SAR) to reveal the active pharmacophores of various indole analogues accountable for anticancer, anticonvulsant, antimicrobial, antitubercular, antimalarial, antiviral, antidiabetic and other miscellaneous activities which have been investigated in the last five years. The precise features with motives and framework of each research topic is introduced for helping the medicinal chemists to understand the perspective of the context in a better way. This review will definitely offer the platform for researchers to strategically design diverse novel indole derivatives having different promising pharmacological activities with reduced toxicity and side effects.  相似文献   

16.
Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.  相似文献   

17.
Herein, we used an imidazole derivative (IMD) which showed promising antibacterial, antifungal and antioxidant properties in our earlier investigation. Prompted by this, we converted IMD to hydrazide (IMH) by hydrazinolysis which was derivatized to various ureas (37) and thioureas (812). On the other hand, IMH was conjugated to Boc-Trp-OH as it has been shown in the past that hybridization of two molecules produced promising biologically active compounds. Boc of the conjugate was removed and further converted into several urea (1418) and thiourea (1923) derivatives. All the title compounds so also the starting materials and intermediates were assessed for potential biological applications. The results showed that compounds 3, 4, 8, 9, 14, 15, 19 and 20 were excellent antioxidants as revealed by DPPH, DMPD and ABTS assays. Further, certain analogues like 57, 1012, 1618 and 2123 were found to be potent antimicrobials against pathogenic bacteria and fungi whereas good anti-inflammatory activity was obtained for molecules 57, 1012, 1618 and 2123. All together, derivatives of the conjugates have shown superior activity over non-conjugated compounds and the former have exhibited potent activity against standard drugs in all the assays. In a quest to understand the binding interactions of the compounds with active site of tyrosine kinase (PDB ID: 2HCK), glucosamine-6-phosphate (GlcN-6-P) synthase (PDB ID: 2VF5) and cyclooxygenase-2 (PDB ID: 1CX2) enzymes, the correlation studies were conducted using molecular modelling which showed good receptor binding interactions with several amino acids of the enzymes. Overall, the current investigation may be considered for the discovery of lead compound(s) for treating multiple disorder conditions using singular molecular entity.  相似文献   

18.
Ghrelin is a small peptide hormone that undergoes a unique posttranslational modification, serine octanoylation, to play its physiological roles in processes including hunger signaling and glucose metabolism. Ghrelin O-acyltransferase (GOAT) catalyzes this posttranslational modification, which is essential for ghrelin to bind and activate its cognate GHS-R1a receptor. Inhibition of GOAT offers a potential avenue for modulating ghrelin signaling for therapeutic effect. Defining the molecular characteristics of ghrelin that lead to binding and recognition by GOAT will facilitate the development and optimization of GOAT inhibitors. We show that small peptide mimics of ghrelin substituted with 2,3-diaminopropanoic acid in place of the serine at the site of octanoylation act as submicromolar inhibitors of GOAT. Using these chemically modified analogs of desacyl ghrelin, we define key functional groups within the N-terminal sequence of ghrelin essential for binding to GOAT and determine GOAT’s tolerance to backbone methylations and altered amino acid stereochemistry within ghrelin. Our study provides a structure-activity analysis of ghrelin binding to GOAT that expands upon activity-based investigations of ghrelin recognition and establishes a new class of potent substrate-mimetic GOAT inhibitors for further investigation and therapeutic interventions targeting ghrelin signaling.  相似文献   

19.
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease.  相似文献   

20.
α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the ‘racemisation’ reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure–activity relationship study has been performed. This paper describes the first structure–activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC50 = 400–750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure–activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号