首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine isolated fossil Pongo teeth from two cave sites in Peninsular Malaysia are reported. These are the first fossil Pongo specimens recorded in Peninsular Malaysia and represent significant southward extensions of the ancient Southeast Asian continental range of fossil Pongo during two key periods of the Quaternary. These new records from Peninsular Malaysia show that ancestral Pongo successfully passed the major biogeographical divide between mainland continental Southeast Asia and the Sunda subregion before 500 ka (thousand years ago).  相似文献   

2.
A large set of South American fossils belonging to the genus Tapirus has been described on the basis of differences in size and proportions of lower molariform teeth. Nevertheless, the reliability of dental proportions for the diagnosis of fossil tapir species is controversial. In this paper, we describe new fossil material of Tapirus from the Quaternary of Serra da Bodoquena, Southwestern Brazil, comparing it to other fossil and extant specimens of the genus by means of multivariate morphometric analyses of lower molariform teeth linear dimensions. The results of Principal Component Analyses indicate that some of the extant and extinct material attributed to Tapirus fall within the range of variation in size and proportions of lower molariform teeth exhibited by recent species of the genus. Therefore, part of the fossil material attributed to new species or to Tapirus sp. may be referable to the extant species Tapirus terrestris. We conclude that the sole use of lower molariform teeth size and proportions to erect new species of Tapirus may not be reliable, and therefore we advocate caution when describing fossil tapirs exclusively based on these criteria.  相似文献   

3.
Developmental dental pathologies provide insight into health of primates during ontogeny, and are particularly useful for elucidating the environment in which extant and extinct primates matured. Our aim is to evaluate whether the prevalence of an unusual dental defect on the mesiolabial enamel of the upper lateral incisor, thought to reflect dental crowding during maturation, is lesser in female orangutans, with their smaller teeth, than in males; and in Sumatran orangutans, from more optimal developmental habitats, than in those from Borneo. Our sample includes 49 Pongo pygmaeus (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth), and Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography, and dental metrics of anterior teeth. We observed fenestration between incisor crypts and marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with or without the defect, implicating undergrowth of the jaw as the proximate cause of dental crowding and defect presence. Male orangutans from both islands show more defects than do females. The defect is significantly more common in Bornean orangutans (71 %) compared to Sumatran (29 %). Prevalence among fossil forms falls between these extremes, except that all five individual Anapithecus show one or both incisors with the defect. We conclude that maxillary lateral incisor defect is a common developmental pathology of apes that is minimized in optimal habitats and that such evidence can be used to infer habitat quality in extant and fossil apes.  相似文献   

4.
The degree of size and shape variation in the A. afarensis fossil sample has been interpreted in a variety of ways. Size variation has been described as exceeding that of extant hominoids, similar to that of strongly sexually dimorphic hominoids, and best matched to modern humans. The degree of shape variation has been characterized both as great and negligible. Recent fieldwork has increased the proximal femoral sample, providing new data with which to examine variation. The proximal femur of A. afarensis is analyzed in a comparative framework in order to gauge the magnitude of size and shape variation in this element.Seven of the best-preserved A. afarensis proximal femora contribute to the analysis (A.L. 128-1, A.L. 152-2, A.L. 211-1, A.L. 288-1ap, A.L. 333-3, A.L. 333-123, A.L. 827-1). Comparative samples from Pan, Pongo, Gorilla, and Homo provide context for interpreting variation among the fossils. The coefficient of variation (CV) of linear measurements is used to estimate size variation. Bootstrap resampling of CVs from extant hominoids provides distributions for comparison to A. afarensis CVs. Ratios of linear measurements provide scale-free shape variables that are used in pairwise comparisons. The Euclidean distance between pairs of A. afarensis are compared to the Euclidean distances between extant hominoid pairs.As found in some earlier analyses, size variation in A. afarensis is accommodated best in gorillas and orangutans. The magnitude of difference in shape between A. afarensis pairs is exceeded by most taxa, indicating that shape variation is not extreme. These general findings are contradicted by a few instances of excessive size and shape variation. These are uncharacteristic results and could point to temporal bias, although other alternatives are explored. The signal from the proximal femur is that size variation in A. afarensis is like that of the strongly sexually dimorphic apes, and shape variation is well within the range of most hominoids irrespective of their degree of size dimorphism.  相似文献   

5.
Here we report on two kinds of cercopithecid fossil monkeys (Cercopithecinae and Colobinae) from the early to middle Pleistocene sediments of the Chochen (=Tsochen) area (Tsailiao-chi or Shinhua Hill), southern Taiwan. The fossil specimens include the first fossil record of colobine monkeys from Taiwan, where only macaque monkeys now occur. All cercopithecine fossils were identified as Macaca cf. Macaca cyclopis, the extant Taiwan macaque, except for one extremely large isolated upper molar, which may belong to another macaque species. On the other hand, all colobine specimens fall within the size variation of extant and extinct Rhinopithecus, but its specific status cannot be determined because of the scantiness of the fossil material. In Taiwan, Rhinopithecus presumably became extinct in the late Pleistocene, probably owing to global cooling and vegetation change, whereas macaques, which are of almost the same body size as Rhinopithecus, survived as M. cyclopis to the present. The contrasting history of survival between the two kinds of monkeys may be due to ecological/behavioral differences between them or as a result of accidental events that occurred in the Pleistocene of Taiwan.  相似文献   

6.
《Annales de Paléontologie》2017,103(2):113-125
The first known fossil specimens of pipehorses (Haliichthyinae) were unearthed from the Middle Miocene (Sarmatian) beds of the Coprolitic Horizon in the Tunjice Hills, Slovenia. These fossil pipehorses belong to a new genus and species Hippohaliichthys edis, which was similar to the extant species Haliichthys taeniophorus. The body morphology indicates that the described fossil pipehorses were also closely related to the pygmy pipehorse Hippotropiscis frenki and the seahorse Hippocampus sarmaticus, two taxa which were also found in the Coprolitic Horizon. The described fossil material of pipehorses indicates that seahorses evolved from a group of pipehorses that were similar in size and shape to extant and fossil pipehorses of the Haliichthyinae subfamily.  相似文献   

7.
Sivapithecus is a Miocene great ape from South Asia that is orangutan-like cranially but is distinctive postcranially. Work by others shows that the humerus resembles large terrestrial cercopithecoids proximally and suspensory hominoids distally, but most functional interpretations nevertheless situate Sivapithecus in an arboreal setting. We present a new quantitative analysis of the Sivapithecus capitate and hamate. Though the functional morphology of both bones suggests some degree of arboreality, the overall morphology is most similar to knuckle-walking African apes. Other features of the Sivapithecus humerus and hind limb are also functionally consistent with knuckle-walking, and we suggest that this locomotor behavior is a valid alternative functional interpretation of the postcranial morphology. We speculate that knuckle-walking in Sivapithecus would have evolved independently from African apes, perhaps for similar ecological reasons. The discovery of a possible pongine knuckle-walker challenges the hypotheses that (1) knuckle-walking evolved only once in hominoids and (2) knuckle-walking is too highly specialized to be the positional behavior from which human bipedalism evolved. The possibility of knuckle-walking in Sivapithecus may help to explain not only the curious combination of characters that typify the postcranium but also the unique postcranial morphology of extant Pongo. Furthermore, it may clarify the distribution of fossil pongines across many ecological zones in Eurasia in the Miocene and Pleistocene, as well as, independently, the spread of African apes across a diversity of environments in equatorial Africa.  相似文献   

8.
Morotopithecus bishopi and Afropithecus turkanensis are two large-bodied hominoid primates from early Miocene deposits of eastern Africa. Researchers have used both cranial and postcranial characters to distinguish these two species. Unfortunately, of the fossil material attributed to each, only the face, palate, and upper dentition are preserved well enough in both species for direct comparisons. There are currently no known directly comparable postcranial elements. In this study, we reevaluated dental characters argued to distinguish the type specimens of Morotopithecus from Afropithecus: relative size of the upper premolars and M3. Exact randomization methods were used to address two questions. First, is it possible to find the degree of dental-size difference observed between Morotopithecus (UMP 62-11) and Afropithecus (KNM-WK 16999) within extant African hominoids? Second, what is the probability of observing the levels of difference found between the fossils among pairs of extant individuals? Metric differences in relative premolar and M3 size were calculated between all possible pairs within the extant sample and the observed difference of the fossil pair was then compared to the resulting distribution of extant pairs. The observed size differences for all comparisons in the fossil teeth were well within the variation observed in the extant African hominoid samples (p>0.05). In light of these results and other currently available cranial evidence, we suggest that the type specimens of Morotopithecus and Afropithecus are not different enough to support taxonomic distinction.  相似文献   

9.
10.
Aim To resolve the phylogeny of humans and their fossil relatives (collectively, hominids), orangutans (Pongo) and various Miocene great apes and to present a biogeographical model for their differentiation in space and time. Location Africa, northern Mediterranean, Asia. Methods Maximum parsimony analysis was used to assess phylogenetic relationships among living large‐bodied hominoids (= humans, chimpanzees, bonobos, gorillas, orangutans), and various related African, Asian and European ape fossils. Biogeographical characteristics were analysed for vicariant replacement, main massings and nodes. A geomorphological correlation was identified for a clade we refer to as the ‘dental hominoids’, and this correlation was used to reconstruct their historical geography. Results Our analyses support the following hypotheses: (1) the living large‐bodied hominoids represent a monophyletic group comprising two sister clades: humans + orangutans, and chimpanzees (including bonobos) + gorillas (collectively, the African apes); and (2) the human–orangutan clade (dental hominoids) includes fossil hominids (Homo, australopiths, Orrorin) and the Miocene‐age apes Hispanopithecus, Ouranopithecus, Ankarapithecus, Sivapithecus, Lufengpithecus, Khoratpithecus and Gigantopithecus (also Plio‐Pleistocene of eastern Asia). We also demonstrate that the distributions of living and fossil genera are largely vicariant, with nodes of geographical overlap or proximity between Gigantopithecus and Sivapithecus in Central Asia, and between Pongo, Gigantopithecus, Lufengpithecus and Khoratpithecus in East Asia. The main massing is represented by five genera and eight species in East Asia. The dental hominoid track is spatially correlated with the East African Rift System (EARS) and the Tethys Orogenic Collage (TOC). Main conclusions Humans and orangutans share a common ancestor that excludes the extant African apes. Molecular analyses are compromised by phenetic procedures such as alignment and are probably based on primitive retentions. We infer that the human–orangutan common ancestor had established a widespread distribution by at least 13 Ma. Vicariant differentiation resulted in the ancestors of hominids in East Africa and various primarily Miocene apes distributed between Spain and Southeast Asia (and possibly also parts of East Africa). The geographical disjunction between early hominids and Asian Pongo is attributed to local extinctions between Europe and Central Asia. The EARS and TOC correlations suggest that these geomorphological features mediated establishment of the ancestral range.  相似文献   

11.
Dental dimensions and distributions of dental dimensions of males and females were compared for great apes (Pan, Gorilla, and Pongo, and humans (Homo). The results were examined and discussed with reference to fossil primates Sivapithecus and Ramapithecus. The analyses focused on patterns of sexual dimorphism, both with regard to mean dimensions and the distribution of those dimensions. Sex differences in mean canine dimensions were large and significant for Gorilla and Pongo, significant but smaller for Pan, and small but occasionally significant for Homo. The dispersions of measures were greater for males than for females in Gorilla and Pan but did not differ significantly for Pongo or Homo. Examination of the noncanine teeth revealed complex sex differences. In the anterior teeth, sex differences in mean dimensions were generally apparent for Gorilla and Pongo, less so for Pan, and least of all in Homo. The patterns of dispersion of measures of anterior teeth differed markedly from those of the canines. Pan exhibited the same pattern for anterior and canine teeth. Gorilla showed the opposite pattern. Pongo and Homo showed similar dispersions for males and females in many cases. Sex differences in posterior teeth followed the pattern of the canines for Gorilla and were absent for Pan. Pongo exhibited mean differences in dimensions across sex, but dispersions were similar. The pattern for Homo was most like that of Pongo, but with fewer significant differences. The genera differed with regard to the number of significant differences in means or dispersions along the tooth row. It is clear that the patterns of dimorphism differ qualitatively across all extant genera of great apes and humans. It appears that the pattern for Homo most closely resembles that of Ramapithecus, whereas Pongo most closely resembles Sivapithecus. The patterns for Gorilla and Pan appear to be unlike either of the fossil forms. It is suggested that the qualitatively distinct patterns of dental sexual dimorphism indicate substantial flexibility during recent primate evolution and that the degree of structural flexibility demonstrated provides a basis for appreciating potential for plasticity of gender differences in behavioral, social, and cultural systems.  相似文献   

12.
The fossil sample attributed to the late Miocene hominoid taxon Ouranopithecus macedoniensis is characterized by a high degree of dental metric variation. As a result, some researchers support a multiple-species taxonomy for this sample. Other researchers do not think that the sample variation is too great to be accommodated within one species. This study examines variation and sexual dimorphism in mandibular canine and postcanine dental metrics of an Ouranopithecus sample. Bootstrapping (resampling with replacement) of extant hominoid dental metric data is performed to test the hypothesis that the coefficients of variation (CV) and the indices of sexual dimorphism (ISD) of the fossil sample are not significantly different from those of modern great apes. Variation and sexual dimorphism in Ouranopithecus M(1) dimensions were statistically different from those of all extant ape samples; however, most of the dental metrics of Ouranopithecus were neither more variable nor more sexually dimorphic than those of Gorilla and Pongo. Similarly high levels of mandibular molar variation are known to characterize other fossil hominoid species. The Ouranopithecus specimens are morphologically homogeneous and it is probable that all but one specimen included in this study are from a single population. It is unlikely that the sample includes specimens of two sympatric large-bodied hominoid species. For these reasons, a single-species hypothesis is not rejected for the Ouranopithecus macedoniensis material. Correlations between mandibular first molar tooth size dimorphism and body size dimorphism indicate that O. macedoniensis and other extinct hominoids were more sexually size dimorphic than any living great apes, which suggests that social behaviors and life history profiles of these species may have been different from those of living species.  相似文献   

13.
Studies of the biostratigraphy and palaeoecology of fossil vertebrate assemblages require large samples of accurately identified specimens. Such analyses can be hampered by the inability to assign isolated and worn remains to specific taxa. Entoptychine gophers are a diverse group of burrowing rodents found in Oligo‐Miocene deposits of the western United States. In both entoptychines and their extant relatives the geomyines, diagnostic characters of the occlusal surface of the teeth are modified with wear, making difficult the identification of many isolated fossil teeth. We use geometric morphometrics to test the hypothesis that tooth shape informs taxonomic affinities and expected levels of morphological variation across gopher taxa. We also incorporate data from microcomputer tomography to investigate changes in occlusal surface shape through wear within individuals. Our analyses demonstrate the usefulness of our approach in identifying extant geomyines to the genus, subgenus and species levels, and fossil entoptychines to the genus and, in some cases, the species level. Our results cast doubt on the validity of some species within Entoptychus and suggest future revisions to entoptychine taxonomy. The amounts of morphological divergence observed among fossil and extant genera are similar. Fossil species do not differ greatly from extant ones in that regard either. Further work evaluating the morphological variation within and across entoptychine species, including unworn teeth and osteological material, will allow revised analyses of the biostratigraphy and palaeoecology of important Oligo‐Miocene mammalian assemblages of the western United States and help to infer the phylogenetic relationships and evolution of gophers.  相似文献   

14.
Most methods of dietary reconstruction are limited in their applicability to either extant or extinct taxa. We apply and discuss a method in which dietary information can be reconstructed from chips in the tooth enamel of both living and fossil primates. Such chips can be used to indicate the presence of large hard foods in the diet, and also to provide an estimate of the bite force that was used when the chip was created. Furthermore, the equations derived from this method allow an estimate of maximum bite force to be obtained from a simple measurement of tooth size. We use this method to investigate dietary differences in nonhuman great apes (Pongo, Gorilla, Pan). The high frequency of chips on teeth of Pongo indicate that they frequently use high forces to process hard foods such as seeds and nuts. Gorilla can generate even higher bite forces, but their low incidence of tooth chips suggests that they do so when consuming soft but tough foods. Tooth chips provide a lasting dietary signal that is not easily masked or erased, making them particularly useful for the study of rarely eaten items such as some fallback foods.  相似文献   

15.
16.
We examined the histology of canine teeth in extant hominoids and provided a comparative database on several aspects of canine development. The resultant data augment the known pattern of differences in aspects of tooth crown formation among great apes and more importantly, enable us to determine the underlying developmental mechanisms responsible for canine dimorphism in them. We sectioned and analyzed a large sample (n = 108) of reliably-sexed great ape mandibular canines according to standard histological techniques. Using information from long- and short-period incremental markings in teeth, we recorded measurements of daily secretion rates, periodicity and linear enamel thickness for specimens of Pan troglodytes, Gorilla gorilla, Pongo pygmaeus and Homo sapiens. Modal values of periodicities in males and females, respectively, are: Pan 7/7; Gorilla 9/10; Pongo 10/10; and Homo 8/8. Secretion rates increase from the inner to the outer region of the enamel cap and decrease from the cuspal towards the cervical margin of the canine crown in all great ape species. Female hominoids tend to possess significantly thicker enamel than their male counterparts, which is almost certainly related to the presence of faster daily secretion rates near the enamel-dentine junction, especially in Gorilla and Pongo. Taken together, these results indicate that sexual differences in canine development are most apparent in the earlier stages of canine crown formation, while interspecific differences are most apparent in the outer crown region. When combined with results on the rate and duration of canine crown formation, the results provide essential background work for larger projects aimed at understanding the developmental basis of canine dimorphism in extant and extinct large-bodied hominoids and eventually in early hominins.  相似文献   

17.
A highly resolved primate cladogram based on DNA evidence is congruent with extant and fossil osteological evidence. A provisional primate classification based on this cladogram and the time scale provided by fossils and the model of local molecular clocks has all named taxa represent clades and assigns the same taxonomic rank to those clades of roughly equivalent age. Order Primates divides into Strepsirhini and Haplorhini. Strepsirhines divide into Lemuriformes and Loriformes, whereas haplorhines divide into Tarsiiformes and Anthropoidea. Within Anthropoidea when equivalent ranks are used for divisions within Platyrrhini and Catarrhini, Homininae divides into Hylobatini (common and siamang gibbon) and Hominini, and the latter divides into Pongina forPongo(orangutans) and Hominina forGorillaandHomo. Homoitself divides into the subgeneraH.(Homo) for humans andH.(Pan) for chimpanzees and bonobos. The differences between this provisional age related phylogenetic classification and current primate taxonomies are discussed.  相似文献   

18.
The first reconstructions of glossopterids interpreted this Gondwanan group as arborescent, deciduous plants, with leaves and reproductive structures inserted on short shoots, which were arranged on long branches. The leaves are its most abundant organ in the fossil record, but they are mainly found isolated. The arrangement of the leaves as terminal whorls or tight spirals has been the most accepted phyllotaxis hypothesis. The few examples of leaf impressions preserved in connection with axes correspond mainly to leaves of Glossopteris Brongniart, and mostly without clear evidence of the type of insertion. Several specimens of Gangamopteris McCoy leaves attached to axes from the Bajo de Véliz Formation (Latest Carboniferous–Earliest Cisuralian) facilitate reconstruction of the foliar arrangement of the genus, to date known mostly from isolated leaves. The available evidence from the new specimens confirms a variation from well-spaced to dense helical insertion of the leaves without forming true whorls, and discards the early notion that they were mainly clustered apically on short shoots in a similar manner to the extant Ginkgoales.  相似文献   

19.
A collection of petrified wood from the Lower Pliocene Ogallala Formation in western Oklahoma was examined. All specimens appear to be of the same taxon and exhibit features of extant Robinia species. To date, four fossil wood species of Robinia have been described. The relationship of Robinioxylon zuriensis Falqui to Robinia is doubtful because of the lack of diagnostic critical features. The remaining three, Robinia alexanderi Webber, Robinia breweri Prakash, Barghoorn and Scott, and Robinioxylon zirkelii (Platen) Müller-Stoll and Mädel do show affinity to Robinia and all have been noted as structurally similar to R. pseudoacacia. The Oklahoma woods and these three fossil species show considerable overlap in quantitative features and are identical in qualitative features. Examination of different sections (and specimens) of extant Robinia pseudoacacia wood reveals quantitative and qualitative variation similar to that found amongst the petrified woods. Robinia alexanderi, Webber, R. breweri Prakash, Barghoorn and Scott, R. zirkelii (Platen) Müller-Stoll and Mädel, and the Oklahoma specimens are considered to be conspecific as the differences between these fossil wood species are no different from those accounted for by variation within a single living species, R. pseudoacacia.  相似文献   

20.
胡荣  赵凌霞 《人类学学报》2012,31(4):371-380
釉面横纹的分布与数目可以反映牙齿生长发育的时间和速率变化, 在化石研究中能为复原个体生活史提供重要依据。本研究运用扫描电子显微镜观察华南化石猩猩门齿、犬齿釉面横纹分布与数目, 并估算门齿和犬齿牙冠形成时间, 结果如下: 牙冠从牙尖至牙颈方向釉面横纹分布密度有疏密变化, 牙尖釉面横纹密度小于10条/mm, 中间至牙颈釉面横纹密度较尖部增大, 大约10-15条/mm; 犬齿釉面横纹数目多于门齿, 雄性犬齿釉面横纹数目多于雌性; 根据釉面横纹计数及其生长周期的组织切片观察结果, 估算门齿牙冠形成时间大约为2.97-6.66年, 犬齿雄性长于雌性, 分别为6.25-11.31年和4.28-7.29年。与一些古猿、早期人类、现代人以及现生大猿比较, 华南化石猩猩釉面横纹整体密度稍大于南方古猿和傍人, 小于黑猩猩、大猩猩、现代人和禄丰古猿; 除侧门齿外, 华南化石猩猩釉面横纹数目明显多于南方古猿、傍人和现代人, 与大猩猩接近; 华南猩猩前部牙齿牙冠形成时间与现生大猿、禄丰古猿差别不大, 与现生猩猩最相近, 长于南方古猿和傍人。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号