首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer disease (AD) and stroke are two leading causes of age-associated dementia. Increasing evidence points to vascular damage as an early contributor to the development of AD and AD-like pathology. In this review, we discuss the role of G protein-coupled receptor kinase 2 (GRK2) as it relates to individuals affected by AD and how the cardiovasculature plays a role in AD pathogenesis. The possible involvement of GRKs in AD pathogenesis is an interesting notion, which may help bridge the gap in our understanding of the heart–brain connection in relation to neurovisceral damage and vascular complications in AD, since kinases of this family are known to regulate numerous receptor functions both in the brain, myocardium, and elsewhere. The aim of this review is to discuss our findings of overexpression of GRK2 in the context of the early pathogenesis of AD, because increased levels of GRK2 immunoreactivity were found in vulnerable neurons of AD patients as well as in a two-vessel occlusion (2-VO) mammalian model of ischaemia. Also, we consider the consequences for this overexpression as a loss of G-protein coupled receptor (GPCR) regulation, as well as suggest a potential role for GPCRs and GRKs in a unifying theory of AD pathogenesis, particularly in the context of cerebrovascular disease. We synthesize this newer information and attempt to put it into context with GRKs as regulators of diverse physiological cellular functions that could be appropriate targets for future pharmacological intervention.  相似文献   

2.
Acetylcholinesterase (AChE) plays a pivotal role in synaptic transmission by hydrolyzing the neurotransmitter acetylcholine. In addition to the classical function of AChE in synaptic transmission, various non-classical functions have been elucidated. Unlike vertebrates possessing a single AChE gene (ace), invertebrates (nematodes, arachnids, and insects) have multiple ace loci, encoding diverse AChEs with a range of different functions. In the field of toxicology, AChE with synaptic function has long been exploited as the target of organophosphorus and cabarmate pesticides to control invertebrate pests for the past several decades. However, many aspects of the evolution and non-classical roles of invertebrate AChEs are still unclear. Although currently available information on invertebrate AChEs is fragmented, we reviewed the recent findings on their evolutionary status, molecular/biochemical properties, and deduced non-classical (non-neuronal) functions.  相似文献   

3.
4.
Tracking proteins’ biophysical characteristics on a proteome-wide scale can provide valuable information on their functions and interactions. Thermal proteome profiling (TPP) is a multiplexed quantitative proteomics approach that measures changes in protein thermal stability—a key biophysical property—across different cellular states. Developed in 2014, as a target-deconvolution assay for drugs and other small molecules, TPP has since evolved to a system-level biochemical omics technique providing insights into context-dependent changes in protein states. In this review, we summarise key advances in the experimental and data analysis pipeline that have aided this transformation and discuss the recent developments and applications of TPP.  相似文献   

5.
6.
7.
Many studies reported that oxidative and nitrosative stress might be important for the pathogenesis of Alzheimer's disease (AD) beginning with arguably the earliest stage of AD, i.e., as mild cognitive impairment (MCI). p53 is a proapoptotic protein that plays an important role in neuronal death, a process involved in many neurodegenerative disorders. Moreover, p53 plays a key role in the oxidative stress-dependent apoptosis. We demonstrated previously that p53 levels in brain were significantly higher in MCI and AD IPL (inferior parietal lobule) compared to control brains. In addition, we showed that in AD IPL, but not in MCI, HNE, a lipid peroxidation product, was significantly bound to p53 protein. In this report, we studied by means of immunoprecipitation analysis, the levels of markers of protein oxidation, 3-nitrotyrosine (3-NT) and protein carbonyls, in p53 in a specific region of the cerebral cortex, namely the inferior parietal lobule, in MCI and AD compared to control brains. The focus of these studies was to measure the oxidation and nitration status of this important proapoptotic protein, consistent with the hypothesis that oxidative modification of p53 could be involved in the neuronal loss observed in neurodegenerative conditions.  相似文献   

8.
A novel category of major intrinsic proteins which share weak similarities with previously identified aquaporin subfamilies was recently identified in land plants, and named X (for unrecognized) intrinsic proteins (XIPs). Because XIPs are still ranked as uncharacterized proteins, their further molecular characterization is required. Herein, a systematic fine-scale analysis of XIP sequences found in flowering plant databases revealed that XIPs are found in at least five groups. The phylogenetic relationship of these five groups with the phylogenetic organization of angiosperms revealed an original pattern of evolution for the XIP subfamily through distinct angiosperm taxon-specific clades. Of all flowering plant having XIPs, the genus Populus encompasses the broadest panel and the highest polymorphism of XIP isoforms, with nine PtXIP sequences distributed within three XIP groups. Comprehensive PtXIP gene expression patterns showed that only two isoforms (PtXIP2;1 and PtXIP3;2) were transcribed in vegetative tissues. However, their patterns are contrasted, PtXIP2;1 was ubiquitously accumulated whereas PtXIP3;2 was predominantly detected in wood and to a lesser extent in roots. Furthermore, only PtXIP2;1 exhibited a differential expression in leaves and stems of drought-, salicylic acid-, or wounding-challenged plants. Unexpectedly, the PtXIPs displayed different abilities to alter water transport upon expression in Xenopus laevis oocytes. PtXIP2;1 and PtXIP3;3 transported water while other PtXIPs did not.  相似文献   

9.
Molecular chaperones, as the name suggests, are involved in folding, maintenance, intracellular transport, and degradation of proteins as well as in facilitating cell signaling. Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone that carries out these processes in normal and cancer cells. Hsp90 function in vivo is coupled to its ability to hydrolyze ATP and this can be regulated by co-chaperones and post-translational modifications. In this review, we explore the varied roles of known post-translational modifications of cytosolic and nuclear Hsp90 (phosphorylation, acetylation, S-nitrosylation, oxidation and ubiquitination) in fine-tuning chaperone function in eukaryotes. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

10.
The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye, which acts as a protective barrier and is critical for clear and stable vision. Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells (LSCs), a cell population that resides at the limbus in a highly regulated niche. Dysfunction of LSCs or their niche can cause limbal stem cell deficiency, a disease that is manifested by failed epithelial wound healing or even blindness. Nevertheless, compared to stem cells in other tissues, little is known about the LSCs and their niche. With the advent of single-cell RNA sequencing, our understanding of LSC characteristics and their microenvironment has grown considerably. In this review, we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology, including the heterogeneity of the LSC population, novel LSC markers and regulation of the LSC niche, which will provide a reference for clinical issues such as corneal epithelial wound healing, ocular surface reconstruction and interventions for related diseases.  相似文献   

11.
As a distinctive member of the noncoding RNA family, circular RNAs (circRNAs) are generated from single-stranded, covalently closed structures and are ubiquitous in mammalian cells and tissues. Due to its atypical circular architecture, it was conventionally deemed insignificant dark matter for a prolonged duration. Nevertheless, studies conducted over the last decade have demonstrated that this abundant, structurally stable and tissue-specific RNA has been increasingly relevant in diverse diseases, including cancer, neurological disorders, diabetes mellitus and cardiovascular diseases (CVDs). Therefore, regulatory pathways controlled by circRNAs are widely involved in the occurrence and pathological processes of CVDs through their function as miRNA sponges, protein sponges and protein scaffolds. To better understand the role of circRNAs and their complex regulatory networks in CVDs, we summarize current knowledge of their biogenesis and function and the latest research on circRNAs in CVDs, with the hope of paving the way for the identification of promising biomarkers and therapeutic strategies for CVDs.  相似文献   

12.
Recent progress in the molecular biology of synaptic transmission, in particular of neurotransmitter receptors, offers novel information relevant to ‘realistic’ modeling of neural processes at the single cell and network level. Sophisticated computer analyses of 2D crystals by high resolution electron microscopy yield images of single neurotransmitter receptor molecules with tentative identifications of ligand binding sites and of conformational transitions. The dynamics of conformational changes can be accounted for by a ‘multistate allosteric network’ model. Allosteric receptors also possess the structural and functional properties required to serve as coincidence detectors between pre- and post-synaptic signals and, therefore, can be used as building blocks for a chemical Hebb synapse. These properties were introduced into networks of formal neurons capable of producing and detecting temporal sequences. In more elaborate models of pre-frontal cortex functions, allosteric receptors control the selection of transient ‘pre-representations’ and their stabilization by external or internal reward signals. We apply this scheme to Shallice's Tower of London test, and we show how a hierarchical neuronal architecture can implement executive or planning functions associated with frontal areas.  相似文献   

13.
14.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play an integral role in the modulation of several physiological functions but can also be potentially destructive if produced in excessive amounts. Protein cysteinyl thiols appear especially sensitive to ROS/RNS attack. Experimental evidence started to accumulate recently, documenting that S-glutathionylation occurs in a number of physiologically relevant situations, where it can produce discrete modulatory effects on protein function. The increasing evidence of functional changes resulting from this modification, and the growing number of proteins shown to be S-glutathionylated both in vitro and in vivo support this contention, and confirm this as an attractive area of research. S-glutathionylated proteins are now actively investigated with reference to problems of biological interest and as possible biomarkers of human diseases associated with oxidative/nitrosative stress.  相似文献   

15.
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein-protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.  相似文献   

16.
Sensorineural hearing loss (SNHL) is one of the most common congenital disorders in humans, afflicting one in every thousand newborns. The majority is of heritable origin and can be divided in syndromic and nonsyndromic forms. Knowledge of the expression profile of affected genes in the human fetal cochlea is limited, and as many of the gene mutations causing SNHL likely affect the stria vascularis or cochlear potassium homeostasis (both essential to hearing), a better insight into the embryological development of this organ is needed to understand SNHL etiologies. We present an investigation on the development of the stria vascularis in the human fetal cochlea between 9 and 18 weeks of gestation (W9–W18) and show the cochlear expression dynamics of key potassium‐regulating proteins. At W12, MITF+/SOX10+/KIT+ neural‐crest‐derived melanocytes migrated into the cochlea and penetrated the basement membrane of the lateral wall epithelium, developing into the intermediate cells of the stria vascularis. These melanocytes tightly integrated with Na+/K+‐ATPase‐positive marginal cells, which started to express KCNQ1 in their apical membrane at W16. At W18, KCNJ10 and gap junction proteins GJB2/CX26 and GJB6/CX30 were expressed in the cells in the outer sulcus, but not in the spiral ligament. Finally, we investigated GJA1/CX43 and GJE1/CX23 expression, and suggest that GJE1 presents a potential new SNHL associated locus. Our study helps to better understand human cochlear development, provides more insight into multiple forms of hereditary SNHL, and suggests that human hearing does not commence before the third trimester of pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1219–1240, 2015  相似文献   

17.
Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and neuropathology. Oxidative and nitrosative stress plays a principal role in the pathogenesis of AD. The induction of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system in the brain represents one of the earliest mechanisms activated by cells to counteract the noxious effects of increased reactive oxygen species and reactive nitrogen species. Although initially proposed as a neuroprotective system in AD brain, the HO-1/BVR-A pathophysiological features are under debate. We previously reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative posttranslational modifications in the brain of subjects with AD and those with mild cognitive impairment (MCI). Furthermore, other groups proposed the observed increase in HO-1 in AD brain as a possible neurotoxic mechanism. Here we provide new insights about HO-1 in the brain of subjects with AD and MCI, the latter condition being the transitional phase between normal aging and early AD. HO-1 protein levels were significantly increased in the hippocampus of AD subjects, whereas HO-2 protein levels were significantly decreased in both AD and MCI hippocampi. In addition, significant increases in Ser-residue phosphorylation together with increased oxidative posttranslational modifications were found in the hippocampus of AD subjects. Interestingly, despite the lack of oxidative stress-induced AD neuropathology in cerebellum, HO-1 demonstrated increased Ser-residue phosphorylation and oxidative posttranslational modifications in this brain area, suggesting HO-1 as a target of oxidative damage even in the cerebellum. The significance of these findings is profound and opens new avenues into the comprehension of the role of HO-1 in the pathogenesis of AD.  相似文献   

18.
19.
Mitochondrial dysfunction and oxidative stress are hallmarks of various neurological disorders, including multiple sclerosis (MS), Alzheimer disease (AD), and Parkinson disease (PD). Mutations in PINK1, a mitochondrial kinase, have been linked to the occurrence of early onset parkinsonism. Currently, various studies support the notion of a neuroprotective role for PINK1, as it protects cells from stress-mediated mitochondrial dysfunction, oxidative stress, and apoptosis. Because information about the distribution pattern of PINK1 in neurological diseases other than PD is scarce, we here investigated PINK1 expression in well-characterized brain samples derived from MS and AD individuals using immunohistochemistry. In control gray matter PINK1 immunoreactivity was observed in neurons, particularly neurons in layers IV-VI. Astrocytes were the most prominent cell type decorated by anti-PINK1 antibody in the white matter. In addition, PINK1 staining was observed in the cerebrovasculature. In AD, PINK1 was found to colocalize with classic senile plaques and vascular amyloid depositions, as well as reactive astrocytes associated with the characteristic AD lesions. Interestingly, PINK1 was absent from neurofibrillary tangles. In active demyelinating MS lesions we observed a marked astrocytic PINK1 immunostaining, whereas astrocytes in chronic lesions were weakly stained. Taken together, we observed PINK1 immunostaining in both AD and MS lesions, predominantly in reactive astrocytes associated with these lesions, suggesting that the increase in astrocytic PINK1 protein might be an intrinsic protective mechanism to limit cellular injury.  相似文献   

20.
By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in regulating neuronal circuits and behavior. The pronounced diversity of GABAergic (gamma-aminobutyric acid) interneurons is paralleled by an extensive diversity of GABAA receptor subtypes. The region- and domain-specific location of these receptor subtypes offers the opportunity to gain functional insights into the role of defined neuronal circuits. These developments are reviewed with regard to the regulation of sleep, anxiety, memory, sensorimotor processing and post-natal developmental plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号