首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Nav1.5 dysfunctions are commonly linked to rhythms disturbances that include type 3 long QT syndrome (LQT3), Brugada syndrome (BrS), sick sinus syndrome (SSS) and conduction defects. Recently, this channel protein has been also linked to structural heart diseases such as dilated cardiomyopathy (DCM).  相似文献   

2.
The ability of cells to reliably fire action potentials is critically dependent upon the maintenance of a hyperpolarized resting potential, which allows voltage-gated Na+ and Ca2+ channels to recover from inactivation and open in response to a subsequent stimulus. Hodgkin and Huxley first recognized the functional importance a small, steady outward leak of K+ ions to the resting potential, action potential generation and cellular excitability, and we now appreciate the contribution of inward rectifier-type K+ channels (Kir or KCNJ channels) to this process. More recently, however, it has become evident that two-pore domain K+ (K2P) channels also contribute to the steady outward leak of K+ ions, and thus, maintenance of the resting potential. Molecular cloning efforts have demonstrated that K2P channel exist in yeast to humans, and represent a major branch in the K+ channel superfamily. Humans express 15 types of K2P channels, which are grouped into six subfamilies, based on similarities in amino acid sequence and functional properties. Although K2P channels are not voltage-gated, due to the absence of a canonical voltage sensor domain, their activity can be regulated by a variety of stimuli, including mechanical force, polyunsaturated fatty acids (PUFAs) (e.g., arachidonic acid), volatile anesthetics, acidity/pH, pharmacologic agents, heat and signaling events, such as phosphorylation and protein-protein interactions. K2P channels thus represent important regulators of cellular excitability by virtue of their impact on the resting potential, and as such, have garnered considerable attention in recent years.  相似文献   

3.
Voltage-gated ion channels (VGIC) are transmembrane proteins responsible for the generation of electrical signals in excitable cells. VGIC were first described in 1952 by Hodgkin and Huxley,1 and have since been associated with various physiological functions such as propagating nerve impulses, locomotion, and cardiac excitability. VGIC include channels specialized in the selective passage of K+, Ca2+ Na+, or H+. They are composed of 2 main structures: the pore domain (PD) and the voltage sensor domain (VSD). The PD ensures the physiological flow of ions and is typically composed of 8 transmembrane segments (TM). The VSD detects voltage variations and is composed of 4 TM (S1-S4). Given their crucial physiological role, VGIC dysfunctions are associated with diverse pathologies known as ion channelopathies. These dysfunctions usually affect the membrane expression of ion channels or voltage-dependent conformational changes of the pore. However, an increasing number of ion channelopathies, including periodic paralysis, dilated cardiomyopathy (DCM) associated with cardiac arrhythmias, and peripheral nerve hyperexcitability (PNH), have been linked to the appearance of a new pathological mechanism involving the creation of an alternative permeation pathway through the normally non-conductive VSD of VGIC. This permeation pathway is called the gating pore or omega pore.  相似文献   

4.
Resting echocardiography with M-mode technique under the control of bidimensional picture and pulsating Doppler ultra sound and a 24-hour ECG with Holter technique were performed in 19 patients with dilated cardiomyopathy (6 females and 13 males; mean age 46 years, mean duration of the disease 23 months). A group of 7 patients with electrocardiographic features of the left ventricle hypertrophy, according to Sokolov index, was distinguished and compared with a group of patients without ventricular hypertrophy. The symptoms of pulmonary hypertension with progressing dilatation and failure of the right cardiac ventricle were found in patients with dilated cardiomyopathy without coexisting hypertrophy, despite of significant deterioration of the contractive function. Cardiac arrhythmias and thrombotic disorders which are hazardous for life were significantly more frequent (78% and 22%, respectively) in this group. Percentage of sudden deaths in these patients was high (56%).  相似文献   

5.
About 10% of cases of hypertrophic cardiomyopathy (HCM) evolve into dilated cardiomyopathy (DCM) with unknown causes. We studied 11 unrelated patients (pts) with HCM who progressed to DCM (group A) and 11 who showed "typical" HCM (group B). Mutational analysis of the beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), and cardiac troponin T (TNNT2) genes demonstrated eight mutations affecting MYH7 or MYBPC3 gene, five of which were new mutations. In group A-pts, the first new mutation occurred in the myosin head-rod junction and the second occurred in the light chain-binding site. The third new mutation leads to a MYBPC3 lacking titin and myosin binding sites. In group B, two pts with severe HCM carried two homozygous MYBPC3 mutations and one with moderate hypertrophy was a compound heterozygous for MYBPC3 gene. We identified five unreported mutations, potentially "malignant" defects as for the associated phenotypes, but no specific mutations of HCM/DCM.  相似文献   

6.
Mutations in the voltage sensor domain (VSD) of CaV1.1, the α1S subunit of the L-type calcium channel in skeletal muscle, are an established cause of hypokalemic periodic paralysis (HypoPP). Of the 10 reported mutations, 9 are missense substitutions of outer arginine residues (R1 or R2) in the S4 transmembrane segments of the homologous domain II, III (DIII), or IV. The prevailing view is that R/X mutations create an anomalous ion conduction pathway in the VSD, and this so-called gating pore current is the basis for paradoxical depolarization of the resting potential and weakness in low potassium for HypoPP fibers. Gating pore currents have been observed for four of the five CaV1.1 HypoPP mutant channels studied to date, the one exception being the charge-conserving R897K in R1 of DIII. We tested whether gating pore currents are detectable for the other three HypoPP CaV1.1 mutations in DIII. For the less conserved R1 mutation, R897S, gating pore currents with exceptionally large amplitude were observed, correlating with the severe clinical phenotype of these patients. At the R2 residue, gating pore currents were detected for R900G but not R900S. These findings show that gating pore currents may occur with missense mutations at R1 or R2 in S4 of DIII and that the magnitude of this anomalous inward current is mutation specific.  相似文献   

7.
Dilated cardiomyopathy (DCM) is a highly prevalent and often lethal disease in Irish wolfhounds. Complex segregation analysis indicated different loci involved in pathogenesis. Linear fixed and mixed models were used for the genome-wide association study. Using 106 DCM cases and 84 controls we identified one SNP significantly associated with DCM on CFA37 and five SNPs suggestively associated with DCM on CFA1, 10, 15, 21 and 17. On CFA37 MOGAT1 and ACSL3 two enzymes of the lipid metabolism were located near the identified SNP.  相似文献   

8.
S4 voltage–sensor mutations in CaV1.1 and NaV1.4 channels cause the human muscle disorder hypokalemic periodic paralysis (HypoPP). The mechanism whereby these mutations predispose affected sarcolemma to attacks of sustained depolarization and loss of excitability is poorly understood. Recently, three HypoPP mutations in the domain II S4 segment of NaV1.4 were shown to create accessory ionic permeation pathways, presumably extending through the aqueous gating pore in which the S4 segment resides. However, there are several disparities between reported gating pore currents from different investigators, including differences in ionic selectivity and estimates of current amplitude, which in turn have important implications for the pathological relevance of these aberrant currents. To clarify the features of gating pore currents arising from different DIIS4 mutants, we recorded gating pore currents created by HypoPP missense mutations at position R666 in the rat isoform of Nav1.4 (the second arginine from the outside, at R672 in human NaV1.4). Extensive measurements were made for the index mutation, R666G, which created a gating pore that was permeable to K+ and Na+. This current had a markedly shallow slope conductance at hyperpolarized voltages and robust inward rectification, even when the ionic gradient strongly favored outward ionic flow. These characteristics were accounted for by a barrier model incorporating a voltage-gated permeation pathway with a single cation binding site oriented near the external surface of the electrical field. The amplitude of the R666G gating pore current was similar to the amplitude of a previously described proton-selective current flowing through the gating pore in rNaV1.4-R663H mutant channels. Currents with similar amplitude and cation selectivity were also observed in R666S and R666C mutant channels, while a proton-selective current was observed in R666H mutant channels. These results add support to the notion that HypoPP mutations share a common biophysical profile comprised of a low-amplitude inward current at the resting potential that may contribute to the pathological depolarization during attacks of weakness.  相似文献   

9.
10.
11.
12.
The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.  相似文献   

13.
Aim The study was carried to determine the association of angiotensin converting enzyme (ACE) insertion/deletion (I/D) polymorphism with the risk of hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Methods and results A total of 174 patients diagnosed with cardiomyopathy (118 with HCM, 51 with DCM, and 5 with RCM) and 164 ethnically, age- and gender-matched controls were included in the study. ACE I/D genotyping was performed by PCR. In total, 25.86% of the patients were in New York Heart Association (NYHA) class III and IV at presentation. A total of 67.24% patients had dyspnea, 56.89% had angina pectoris, and 25.28% of the patients had at least one event of syncope. Frequency of occurrence of the disease was more in male patients compared to female patients (P < 0.05). After adjustment for age, sex, body mass index (BMI), and smoking habit, the prevalence of ACE DD genotype, and ACE ‘D’ allele was significantly higher in patients as compared to controls and was associated with increased risk (DD: OR 2.11, 95% CI 1.27–3.52, P < 0.05; ‘D’: OR 1.91, 95% CI 1.08–3.35, P < 0.05). The mean septal thickness was higher for DD and ID genotypes (20.40 ± 3.73 mm and 21.82 ± 5.35 mm, respectively) when compared with II genotype (18.63 ± 6.69 mm) in HCM patients, however, the differences were not significant statistically (P > 0.05). The DCM patients with ID genotype showed significantly decreased left ventricular ejection fraction (LVEF) at enrolment (26.50 ± 8.04%) (P = 0.04). Conclusion Our results suggest that D allele of ACE I/D polymorphism significantly influences the HCM and DCM phenotypes.  相似文献   

14.
We measured selenium (Se) levels in the urine and blood plasma samples of 72 Saudi Arabian patients with dilated cardiomyopathy (DCM) and 70 control subjects of the same origin. To correct for differences in the hydration state of the subjects, the selenium concentration for each urine sample was normalized by dividing it by the concentration of creatinine (CREAT) in the same sample. The median (and range) of the values found for the concentration of Se in plasma, urine, and normalized concentration in urine for the control subjects was 1.306 (0.66–2.50) μM, 0.478 (0.05–2.00) μM, and 56.7 (10.6–426.5) μM Se/M CREAT, respectively, whereas, for the patients, it was 1.246 (0.53–2.45) μM, 0.39 (0.05–1.90) μM, and 75.1 (4.9–656.2) μM Se/M CREAT, respectively. Additionally, the patients were separated into three subgroups according to the severity of their disease state as judged by NYHA procedure, and were then compared to the control group. Only group 4 (the most severe state of the disease) had a significantly lower concentration of urinary Se than the control group. However, the difference became nonsignificant when normalized for CREAT levels. There was no significant difference in the plasma Se levels between the controls and any of the patient groups. As the plasma Se in the control group and in the DCM patients both fell on the low end of the “normal” range, with the patients being marginally lower than the controls, there is no firm evidence from this study to suggest that Se is related to the high incidence rate of DCM found in Saudi Arabia.  相似文献   

15.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

16.
BACKGROUND: Dilated cardiomyopathy (DCM) has been suggested to be a consequence of a prior viral infection leading to a chronic inflammatory and immunological reaction that leads to a structural and functional deterioration of the heart. Nevertheless, the results of present studies are conflicting, regarding the natural course of heart diseases associated with detection of viral genome and inflammation. On the other hand, diabetes mellitus (DM) is the leading endocrine disorder worldwide and sufficient to induce a cardiomyopathy. It is not known whether DM contributes to the clinical picture of cardiomyopathy associated with the presence of viral genome or inflammatory cells in the myocardium. Therefore, the present study was undertaken to compare histological, immunohistochemical, biochemical, and functional data as well as the outcome of patients presenting with DCM and positive for DM with patients negative for DM to evaluate for a diabetic contribution in the course of the disease. METHODS: A total of 216 patients were biopsied between January 1998 and April 2003. From 197 patients diagnosed as having DCM, we were able to complete data set regarding the presence of DM in 108 patients, 20 patients with and 88 patients without DM. RESULTS: There was no significant difference regarding age, gender, body mass index, presence of viral genome and inflammatory cells in the myocardium, left ventricular function and diameter, and the degree of heart insufficiency. There was a significant difference of apoptotic cells in the myocardium of patients with DCM and DM compared to patients with DCM alone (1.7+/-1.9 vs. 0.2+/-0.4, p=0.028). During the follow-up of 16 months, left ventricular function improved in both groups significantly, but not between the groups. Death or transplantation-free survival was not significantly different. CONCLUSION: The different findings regarding the presence of apoptotic cells suggest a contribution of pathobiological pathways in the patients with DM to the underlying heart disease.  相似文献   

17.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common hereditary cardiac conditions. Both are frequent causes of sudden death and are often associated with an adverse disease course. Alpha-cardiac actin is one of the disease genes where different missense mutations have been found to cause either HCM or DCM. We have tested the hypothesis that the protein-folding pathway plays a role in disease development for two actin variants associated with DCM and six associated with HCM. Based on a cell-free coupled translation assay the actin variants could be graded by their tendency to associate with the chaperonin TCP-1 ring complex/chaperonin containing TCP-1 (TRiC/CCT) as well as their propensity to acquire their native conformation. Some variant proteins are completely stalled in a complex with TRiC and fail to fold into mature globular actin and some appear to fold as efficiently as the wild-type protein. A fraction of the translated polypeptide became ubiquitinated and detergent insoluble. Variant actin proteins overexpressed in mammalian cell lines fail to incorporate into actin filaments in a manner correlating with the degree of misfolding observed in the cell-free assay; ranging from incorporation comparable to wild-type actin to little or no incorporation. We propose that effects of mutations on folding and fiber assembly may play a role in the molecular disease mechanism.  相似文献   

18.
Among Ashkenazi Jewish individuals with mucolipidosis IV (ML IV), two mutations in the ML IV gene, IVS3-1A --> G and delEX1-EX7, account for more than 95% of disease alleles. The reported method of genotyping for the delEX1-EX7 mutation involves a cumbersome multistep procedure. In the present study, a new simplified one-step procedure is described that detects this mutation in both patients and carriers. An improved procedure is also described for detection of the IVS3-1A --> G mutation. Using these improved procedures, we have characterized the ML IV mutant alleles in 27 patients and 95 of their relatives from 22 families, and in 123 unrelated and unaffected Ashkenazi Jewish controls. Of the 27 ML IV patients, 16 patients (59.3%) were found to be homozygous for the IVS3-1A --> G mutation and 1 patient (3.7%) homozygous for the delEX1-EX7 mutation. Additionally, 9 patients (33.3%) were compound heterozygotes for IVS3-1A --> G/delEX1-EX7. Among the 123 Ashkenazi Jewish controls, two individuals were identified as heteroallelic with one IVS3-1A --> G mutation (carrier frequency: approximately 1 in 61); none showed the delEX1-EX7 mutation. The modifications described here provide a more facile means of genotyping patients and carriers and expand the possibilities for screening at-risk populations.  相似文献   

19.
Non ischemic dilated cardiomyopathy (NIDCM) is a disorder of myocardium. It has varying etiologies. Albeit the varying etiologies of this heart muscle disorder, it presents with symptoms of heart failure, and rarely as sudden cardiac death (SCD). Manifestations of this disorder are in many ways similar to its counterpart, ischemic dilated cardiomyopathy (IDCM). A proportion of patients with NIDCM carries a grave prognosis and is prone to sudden cardiac death from sustained ventricular arrhythmias. Identification of this subgroup of patients who carry the risk of sudden cardiac death despite adequate medical management is a challenge. Yet another method is a blanket treatment of patients with this disorder with anti arrhythmic medications or anti tachyarrhythmia devices like implantable cardioverter defibrillators (ICD). However this modality of treatment could be a costly exercise even for affluent economies. In this review we try to analyze the existing data of risk stratification of NIDCM and its clinical implications in practice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号