首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have used three polarity-sensitive fluorescence probes, 6-propionyl 2-(N,N-dimethyl-amino) naphthalene (Prodan), pyrene and 8-anilino 1-naphthalene sulphonic acid, to study their binding with erythroid and nonerythroid spectrin, using fluorescence spectroscopy. We have found that both bind to prodan and pyrene with high affinities with apparent dissociation constants (Kd) of .50 and .17?μM, for prodan, and .04 and .02?μM, for pyrene, respectively. The most striking aspect of these bindings have been that the binding stoichiometry have been equal to 1 in erythroid spectrin, both in dimeric and tetrameric form, and in tetrameric nonerythroid spectrin. From an estimate of apparent dielectric constants, the polarity of the binding site in both erythroid and nonerythroid forms have been found to be extremely hydrophobic. Thermodynamic parameters associated with such binding revealed that the binding is favored by positive change in entropy. Molecular docking studies alone indicate that both prodan and pyrene bind to the four major structural domains, following the order in the strength of binding to the Ankyrin binding domain?>?SH3 domain?>?Self-association domain?>?N-terminal domain of α-spectrin of both forms of spectrin. The binding experiments, particularly with the tetrameric nonerythroid spectrin, however, indicate more toward the self association domain in offering the unique binding site, since the binding stoichiometry have been 1 in all forms of dimeric and tetrameric spectrin, so far studied by us. Further studies are needed to characterize the hydrophobic binding sites in both forms of spectrin.  相似文献   

2.
Spectrin, the major constituent protein of the erythrocyte membrane skeleton, exhibits chaperone activity by preventing the irreversible aggregation of insulin at 25 degrees C and that of alcohol dehydrogenase at 50 degrees C. The dimeric spectrin and the two subunits, alpha-spectrin and beta-spectrin prevent such aggregation appreciably better, 70% in presence of dimeric spectrin at an insulin:spectrin ratio of 1:1, than that in presence of the tetramer of 25%. Our results also show that spectrin binds to denatured enzymes alpha-glucosidase and alkaline phosphatase during refolding and the reactivation yields are increased in the presence of the spectrin derivatives when compared with those refolded in their absence. The unique hydrophobic binding site on spectrin for the fluorescence probe, 6-propionyl-2-(dimethylamino)naphthalene (Prodan) has been established to localize at the self-associating domain with the binding stoichiometry of one Prodan/both dimeric and tetrameric spectrin. The other fluorescence probe, 1-anilinonaphthalene-8-sulfonic acid, does not show such specificity for spectrin, and the binding stoichiometry is between 3 and 5 1-anilinonaphthalene-8-sulfonic acid/dimeric and tetrameric spectrin, respectively. Regions in alpha- and beta-spectrins have been found to have sequence homology with known chaperone proteins. More than 50% similarities in alpha-spectrin near the N terminus with human Hsp90 and in beta-spectrin near the C terminus with human Hsp90 and Escherichia coli DnaJ have been found, indicating a potential chaperone-like sequence to be present near the self-associating domain that is formed by portions of alpha-spectrin near the N terminus and the beta-spectrin near the C terminus. There are other patches of sequences also in both the spectrin polypeptides, at the other termini as well as in the middle of the rod domain having significant homology with well known chaperone proteins.  相似文献   

3.
The binding of the apolar fluorescent dye 8-anilinonaphthalene-1-sulfonate (ANS) to bovine serum albumin (BSA), phospholipase A2 (PLA2), ovalbumin, lysozyme, cobrotoxin and N-acetyltryptophanamide was used to assess the factors affecting the efficiency of energy transfer from Trp residues to the ANS molecule. We found that the efficiency of energy transfer from Trp residues to ANS was associated with the ability of proteins to enhance the ANS fluorescence. At the same molar concentration of protein, BSA enhanced ANS fluorescence most among these proteins; its Trp fluorescence was drastically quenched by the addition of ANS. Fluorescence enhancement of ANS in PLA2-ANS complex increased upon addition of Ca2+ or change of the buffer to acidicpH, resulting in a higher efficiency of energy transfer from Trp residues to ANS. There was limited ANS fluorescence enhancement with ovalbumin, lysozyme, cobrotoxin, and N-acetyltryptophanamide and a less efficient quenching in Trp fluorescence. The capabilities of proteins for binding with ANS correlated with the decrease in their Trp fluorescence being quenching by ANS. However, the microenvironment surrounding Trp residues of proteins did not affect the energy transfer. Based on these results, the factors that affected the energy transfer from Trp residues to ANS are discussed.  相似文献   

4.
5.
Interactions of two local anesthetics, dibucaine and tetracaine have been studied with phospholipid vesicles containing cholesterol and/or monosialogangliosides (GM1) using fluorescence spectroscopy. The fluorescence intensity of tetracaine showed a marked increase with the increasing molar ratio of the phospholipid to tetracaine, while that of dibucaine showed opposite effects. Steady state anisotropy and the wavelength of maximum emission (λmax) decreased with the increasing phospholipids to tetracaine ratio. The extent of such changes in anisotropy and λmax in the presence and absence of two important components of neuronal membranes, cholesterol and GM1 indicated differential membrane localization of the two local anesthetics. To understand the intercellular mode of action of local anesthetics, we have also studied the interactions of dibucaine and tetracaine with brain spectrin which indicate differential spectrin interactions with similar binding strength. Thermodynamic parameters associated with such binding reveal that binding is favored by entropy. Tetracaine brings about distinct structural changes in spectrin compared to dibucaine, as reflected in the tryptophan mean lifetime and far-UV CD spectra. Tetracaine also exhibits a detergent-like property inducing concentration dependent decrease in spectrin anisotropy, further indicating structural changes in brain spectrin with probable implications in its anesthetic potential.  相似文献   

6.
We have investigated the organization and dynamics of tryptophan residues in tetrameric, monomeric and unfolded states of soybean agglutinin (SBA) by selective chemical modification, steady-state and time-resolved fluorescence, and phosphorescence. Oxidation with N-bromosuccinimide (NBS) modifies two tryptophans (Trp 60 and Trp 132) in tetramer, four (Trp 8, Trp 203 and previous two) in monomer, and all six (Trp 8, Trp 60, Trp 132, Trp 154, Trp 203 and Trp 226) in unfolded state. Utilizing wavelength-selective fluorescence approach, we have observed a red-edge excitation shift (REES) of 10 and 5 nm for tetramer and monomer, respectively. A more pronounced REES (21 nm) is observed after NBS oxidation. These results are supported by fluorescence anisotropy experiments. Acrylamide quenching shows the Stern–Volmer constant (KSV) for tetramer, monomer and unfolded SBA being 2.2, 5.0 and 14.6 M−1, respectively. Time-resolved fluorescence studies exhibit biexponential decay with the mean lifetime increasing along tetramer (1.0 ns) to monomer (1.9 ns) to unfolded (3.6 ns). Phosphorescence studies at 77 K give more structured spectra, with two (0,0) bands at 408.6 (weak) and 413.2 nm for tetramer. However, a single (0,0) band appears at 411.8 and 407.2 nm for monomer and unfolded SBA, respectively. The exposure of hydrophobic surface in SBA monomer has been examined by 8-anilino-1-naphthalenesulfonate (ANS) binding, which shows ∼20-fold increase in ANS fluorescence compared to that for tetramer. The mean lifetime of ANS also shows a large increase (12.0 ns) upon binding to monomer. These results may provide important insight into the role of tryptophans in the folding and association of SBA, and oligomeric proteins in general.  相似文献   

7.
Calpains and caspases are ubiquitous cysteine proteases that are associated with a variety of cellular pathways. Calpains are involved in processes such as long term potentiation, cell motility and apoptosis, and have been shown to cleave non-erythroid (brain) α- and β-spectrin and erythroid β-spectrin. The cleavage of erythroid α-spectrin by calpain has not been reported. Caspases play an important role in the initiation and execution of apoptosis, and have been shown to cleave non-erythroid but not erythroid spectrin. We have studied the effect of spectrin fragments on calpain and caspase activities. The erythroid and non-erythroid spectrin fragments used were from the N-terminal region of α-spectrin, and C-terminal region of β-spectrin, both consisting of regions involved in spectrin tetramer formation. We observed that the all spectrin fragments exhibited a concentration-dependent inhibitory effect on calpain, but not caspase activity. It is clear that additional studies are warranted to determine the physiological significance of calpain inhibition by spectrin fragments. Our findings suggest that calpain activity is modulated by the presence of spectrin partial domains at the tetramerization site. It is not clear whether the inhibitory effect is substrate specific or is a general effect. Further studies of this inhibitory effect may lead to the identification and development of new therapeutic agents specifically for calpains, but not for caspases. Proteins/peptides with a coiled coil helical conformation should be studied for potential inhibitory effects on calpain activity.  相似文献   

8.
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-specR22S, a tetramerization site mutant homologous to the pathological α-specR28S allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrinR22S rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.  相似文献   

9.
Spectrin tetramerization is important for the erythrocyte to maintain its unique shape, elasticity and deformability. We used recombinant model proteins to show the importance of one residue (G46) in the erythroid α-spectrin junction region that affects spectrin tetramer formation. The G46 residue in the erythroid spectrin N-terminal junction region is the only residue that differs from that in non-erythroid spectrin. The corresponding residue is R37. We believe that this difference may be, at least in part, responsible for the 15-fold difference in the equilibrium constants of erythroid and non-erythroid tetramer formation. In this study, we replaced the Gly residue with Ala, Arg or Glu residues in an erythroid α-spectrin model protein to give G46A, G46R or G46E, respectively. We found that their association affinities with a β-spectrin model protein were quite different from each other. G46R exhibited a 10-fold increase and G46E exhibited a 16-fold decrease, whereas G46A showed little difference, when compared with the wild type. The thermal and urea denaturation experiments showed insignificant structural change in G46R. Thus, the differences in affinity were due to differences in local, specific interactions, rather than conformational differences in these variants. An intra-helical salt bridge in G46R may stabilize the partial domain single helix in α-spectrin, Helix C’, to allow a more stable helical bundling in the αβ complex in spectrin tetramers. These results not only showed the importance of residue G46 in erythroid α-spectrin, but also provided insights toward the differences in association affinity between erythroid and non-erythroid spectrin to form spectrin tetramers.  相似文献   

10.
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.  相似文献   

11.
Spectrin, a major component of the membrane skeletal meshwork of metazoan cells, is implicated to associate with membrane domains and is known to act as a scaffold for stabilization and activation of different signalling modules. We have studied the effect of GM1 (monosialotetrahexosyl ganglioside), a well-known model ganglioside and a signalling moiety, on the interaction of non-erythroid brain spectrin with both saturated and unsaturated aminophospholipids by spectroscopic methods. We observe that GM1 modulates brain spectrin-aminophospholipid interaction to the greatest degree whereas its effect on erythroid spectrin is not as pronounced. Fluorescence quenching studies show that brain spectrin interacts with DMPC/DMPE-based vesicles with a 10-fold increased affinity in presence of very low amounts of 2% and 5% GM1, and the extent of quenching decreases progressively in presence of increasing amounts of GM1. Interaction of brain spectrin with unsaturated membrane systems of DOPC/DOPE weakens in presence GM1. Increase in the mean lifetime of the Trp residues of brain spectrin in presence of GM1 indicates change in the microenvironment of spectrin, without affecting the secondary structure of the protein significantly. Studies on pressure – area isotherm of Langmuir-Blodgett monolayer and Brewster's angle microscopy show that GM1 has an expanding effect on the aminophospholipid monolayers, and ordered regions in DMPC/DMPE mixed monolayers are formed and are stabilized at higher pressure. GM1-induced fluidization of the phospholipid membranes and probable physical contact between bulky sugar head group of GM1 and spectrin, may explain the modulatory role of GM1 on aminophospholipid interactions with nonerythroid brain spectrin.  相似文献   

12.
Tau factor, one of the microtubule-associated proteins (MAPs), is shown here to bind to spectrin. Evidence for an interaction between these two proteins is provided by spectrin affinity chromatography of brain MAPs, gel overlay of electrophoresed MAPs with 125I-labelled spectrin, incorporation of tau factor in human erythrocyte ghosts, and demonstration that tau inhibits the F-actin cross-linking activity of tetrameric spectrin.The wide distribution of both tau and spectrin-like proteins in eukaryotic cells in in favor of the possible biological significance of this interaction. The results suggest that tau could be one of the proteins involved in the concerted regulation of microtubule and actin networks in the membrane vicinity.  相似文献   

13.
V I Dreval' 《Biofizika》1991,36(6):1000-1003
ATP influence on the structure of plasma membranes thymocytes of cattle was studied. Fluorescence anisotropy of tryptophan residues of membrane proteins, fluorescence anisotropy of 3-methoxybenzanetron and fluorescence intensity of 1-anilinonaphthalene-8-sulphonate were determined. Changes of tryptophan fluorescence anisotropy and of ANS fluorescence intensity were established. It is supposed that the observed changes are connected with the change of membrane proteins structure and plasma membrane charge.  相似文献   

14.
Cellular differentiation is often accompanied by the expression of specialized plasma membrane proteins which accumulate in discrete regions. The biogenesis of these specialized membrane domains involves the assembly and co-localisation of a spectrin-based membrane skeleton. While the constituents of the membrane skeleton in non-erythroid cells are often immunologically related to erythroid spectrin, ankyrin, and protein 4.1, there are structural and functional differences between the isoforms of these membrane skeleton polypeptides, as well as highly variable patterns of expression during cellular differentiation. We consider this heterogeneity of structure and expression during development in the context of the hypothesis that non-erythroid spectrin, ankyrin, and protein 4.1 are involved in the formation of specialized membrane domains.  相似文献   

15.
In chloroform solution, the D ,L -alternating stereo-co-oligopeptide HCO-L -Phe-(D -Phe-L -Phe)3-OMe (I) forms three major species, two of which are dimeric and one tetrameric. One of the two dimeric species gives a specific set of 1H-nmr signals at 25°C; the other, together with the tetrameric species, gives another set of resonance signals. In a carbon tetrachloride or cyclohexane solution at 25°C, I forms virtually only the tetrameric species. From the nmr data, it can be shown that the dimeric and tetrameric species, that are in rapid equilibrium with each other in chloroform solutions, are a right-handed ↑↑β5.6 helical dimer and the head-to-head (formyl-ends-to-formyl-ends) dimerization product of this dimer. It is suggested that the linear gramicidins may also form head-to-head dimers of parallel β helices, as observed for the model oligopeptide I.  相似文献   

16.
It was indicated from fluorescence spectra and fluorescence titration that a hydrophobic probe, 1-anilino-8-naphthalenesulfonate (ANS), binds to casein components (αs-, β- and κ-caseins). Fluorescence intensity and affinity of ANS-κ-casein complex were larger than that of ANS-αs- and ANS-β-casein complexes. Enhancements of fluorescence intensity of complexes of casein components were observed by the addition of KCI or CaCl2. Reason for the enhancement was postulated to be the increase of the quantum yield of the ANS fluorescence caused by the environmental change of ANS binding region of the casein components.

Marked increase of sedimentation coefficient of β-casein in the presence of KCl or CaCl2 at 10°C was caused by the addition of ANS. This may be responsible for the stimulation of the Ca-dependent precipitation of β-casein by the addition of ANS.

It was found that αs · κ-association was prevented by ANS and that hydrophobic interaction have an important role for αs · κ-association.  相似文献   

17.
To follow microviscosity changes in membranes associated with fibrinogen binding to human platelets, specific fluorescent probes were used and their fluorescence anisotropy was analysed. The degree of fluorescence anisotropy of diphenylhexatriene, anilinonaphthalene sulfonate (ANS) and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Fluorescence polarization analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase in the membrane lipid rigidity. On the other hand, changes in the fluorescence anisotropy of membrane tryptophans and N-(3-pyrene)maleimide suggest augmented mobility of the membrane proteins. The binding of fibrinogen to the membrane receptors is not accompanied by any change in the fluorescence intensity of ANS attached to the membranes. This may suggest that covering of platelets with fibrinogen molecules does not influence the surface membrane charge.  相似文献   

18.
Phospholipase A2 modification of lipid-protein interactions of normal O,Rh(D) positive erythrocyte membranes increased the fluorescence intensity of the membrane bound probe, 1-anilinonaphthalene-8-sulfonate (ANS) and increased the N-1-[14C]-ethyl maleimide ([14C]-NEM) labeling of sulfhydryl groups in two proteins of molecular weight >200,000. In marked contrast, phospholipase A2 modification of the rare phenotype O,Rhnull membranes resulted in no significant increase in ANS fluorescence or labeling of sulfhydryl groups by [14C] NEM. Since the O,Rhnull erythrocytes demonstrated an increased osmotic fragility and decreased survival time, the fluorescence and sulfhydryl labeling data support the conclusion that hydrophobic bonding between β-fatty acid side chains and non-polar regions of asymmetric proteins is necessary for maintaining the native structure of the O,Rh(D) positive membrane. Comparative studies with phospholipase C or D implied that ionic bonding played a similar though less important structural role in both membranes.  相似文献   

19.
The stability of the human erythrocyte membrane skeletal network is reported to be dependent on the state of aggregation of spectrin and decreased or increased by polyphosphate anions or the polyamine, spermine, respectively. We have employed polyacrylamide gel electrophoresis and electron spin resonance (ESR) utilizing spin labels specific for membrane proteins, bilayer lipids, or cell-surface sialic acid in order to gain insight into these observations and into the reliability of the ESR spectra of the protein-specific spin label used to correctly report the interactions of the skeletal protein network. The major findings are: (1) We confirm previous reports that the preferred state of spectrin aggregation in the skeletal network is tetrameric and that spectrin can be reversibly transformed to dimeric spectrin and back to tetrameric spectrin on the membrane. (2) The ESR spectra of the protein specific maleimide spin label employed accurately reflect the state of aggregation of spectrin. (3) As dimeric spectrin is increased on the membrane or when 2,3-bis-phosphoglycerate was added to spin-labeled membranes, increased segmental motion of protein spin label binding sites reflecting decreased protein-protein interactions in the skeletal network is observed (P < 0.002 and P < 0.005, respectively). (4) Conversely, as protein-protein interactions between skeletal proteins or between skeletal proteins and the bilayer are increased by spermine (reflected in the total inability to extract spectrin from the membrane in contrast to control membranes), highly decreased segmental motion of the protein specific spin label binding sites is observed (P < 0.005). (5) The dimeric-tetrameric state of spectrin aggregation on the membrane does not have influence on the order or motion of bilayer lipids nor on the rotational rate of spin-labeled, cell-surface sialic acid, a result also observed when protein-protein interactions were decreased by 2,3-bisphosphoglycerate. In contrast, increased protein-protein interactions by addition of spermine produced a small, but significant, increase in order and decrease in motion of bilayer lipids near the membrane surface as well as a nearly 40% decrease in the apparent rotational correlation time of spin labeled, cell surface sialic acid (P < 0.002). These latter observations are discussed with reference to possible associations of phospholipids and the major, transmembrane sialoglycoprotein with the skeletal protein network.  相似文献   

20.
We have purified from a membrane fraction of bovine brain a calmodulin-binding protein (calspectin) that shares a number of properties with erythrocyte spectrin: It has a heterodimeric structure with Mr 240 000 and 235 000 and binds to (dimeric form) or crosslinks (tetrameric form) F-actin. We show that calspectin (tetramer) is capable of inducing the polymerization of G-actin to actin filaments by increasing nucleation under conditions where actin alone polymerizes at a much slower rate. Thus, brain calspectin behaves in the same manner as erythrocyte spectrin, supporting the idea that, in conjunction with actin oligomers it comprises the cytoskeletal meshwork underlying the cytoplasmic surface of the nerve cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号