首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduced exotic species have the potential to spread their associated parasites to native species which can be catastrophic if these hosts are immunologically naïve to the novel parasite. The guppy (Poecilia reticulata) has been disseminated worldwide outside of its native habitat and therefore could be an important source of infection to native fish species. Its parasite fauna is dominated by the ectoparasitic monogeneans, Gyrodactylus turnbulli and Gyrodactylus bullatarudis. The current study tested the host specificity of G. bullatarudis by experimentally infecting a range of isolated fish hosts, including temperate species. Surprisingly, the parasite was capable of establishing and reproducing, for several days, on the three-spined stickleback when transferred directly to this host. We also established that G. bullatarudis could be transmitted under aquarium conditions at both 25 °C and 15 °C. At the higher temperature, the parasite was even capable of reproducing on this atypical host. The implications of these findings are discussed in terms of host specificity, host switching and climate change.  相似文献   

2.
Host specificity in parasites can be explained by spatial isolation from other potential hosts or by specialization and speciation of specific parasite species. The first assertion is based on allopatric speciation, the latter on differential lifetime reproductive success on different available hosts. We investigated the host specificity and cophylogenetic histories of four sympatric European bat species of the genus Myotis and their ectoparasitic wing mites of the genus Spinturnix. We sampled >40 parasite specimens from each bat species and reconstructed their phylogenetic COI trees to assess host specificity. To test for cospeciation, we compared host and parasite trees for congruencies in tree topologies. Corresponding divergence events in host and parasite trees were dated using the molecular clock approach. We found two species of wing mites to be host specific and one species to occur on two unrelated hosts. Host specificity cannot be explained by isolation of host species, because we found individual parasites on other species than their native hosts. Furthermore, we found no evidence for cospeciation, but for one host switch and one sorting event. Host‐specific wing mites were several million years younger than their hosts. Speciation of hosts did not cause speciation in their respective parasites, but we found that diversification of recent host lineages coincided with a lineage split in some parasites.  相似文献   

3.
Host–parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host‐related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro‐ versus macroevolutionary dynamics in host–parasite interactions.  相似文献   

4.
Previous studies about geographic patterns of species diversity of avian malaria parasites and others in the Order Haemosporida did not include the avian biodiversity hotspot Madagascar. Since there are few data available on avian malaria parasites on Madagascar, we conducted the first known large-scale molecular-based study to investigate their biodiversity. Samples (1067) from 55 bird species were examined by a PCR method amplifying nearly the whole haemosporidian cytochrome b gene (1063?bp). The parasite lineages found were further characterized phylogenetically and the degree of specialization was determined with a newly introduced host diversity index (Hd). Our results demonstrate that Madagascar indeed represents a biodiversity hotspot for avian malaria parasites as we detected 71 genetically distinct parasite lineages of the genera Plasmodium and Haemoproteus. Furthermore, by using a phylogenetic approach and including the sequence divergence we suspect that the detected haemosporidian lineages represent at least 29 groups i.e. proposed species. The here presented Hd values for each parasite regarding host species, genus and family strongly support previous works demonstrating the elastic host ranges of some avian parsites of the Order Haemosporida. Representatives of the avian parasite genera Plasmodium and Leucocytozoon tend to more often be generalists than those of the genus Haemoproteus. However, as demonstrated in various examples, there is a large overlap and single parasite lineages frequently deviate from this rule.  相似文献   

5.

Background

Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts.

Methodology/Principal Findings

Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection.

Conclusions/Significance

Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species.  相似文献   

6.
We investigated how Gyrodactylus corydoriBueno-Silva and Boeger, 2009 exploits two sympatric host species, Corydoras paleatus (Jenyns, 1842) and Corydoras ehrhardti Steindachner, 1910. Specimens of G. corydori were collected from the Piraquara and Miringuava Rivers, State of Paraná, Brazil, between 2005 and 2006. A total of 167 parasites was measured from both host species. Nine morphometric features of the haptoral sclerites were measured and analyzed by discriminant analysis, cluster analysis and multivariate analysis of variance. A fragment of the mitochondrial cytochrome oxidase I gene (COI) (∼740 bp) and the rDNA internal transcribed spacers (ITS) (∼1200 bp) of G. corydori were sequenced. Bayesian and parsimony analyses of COI recognized two genetically structured clades of G. corydori, which corresponded closely with the two species of Corydoras. Twenty-eight haplotypes were detected (18 were exclusive to C. ehrhardti and seven were exclusive to C. paleatus). The same general pattern between parasites and host species was observed in the morphometric analyses. Nevertheless, poor correlation of genetic and morphometric variation strongly supports the plastic nature of the morphological variation of haptoral sclerites. The existence of two clades with limited gene flow would suggest that G. corydori already represents two cryptic species. However, the morphometric and molecular data showed that there is insufficient evidence to support two valid species. The low COI (0.1-6.2%) and ITS (0.09-3.5%) divergence within G. corydori suggest a recent separation of the lineages between distinct host species (less than 1 million years). As the hypothesis of secondary contact of the parasite demographic history was rejected, our results point to the possibility of sympatric incipient ongoing speciation of G. corydori to form distinct parasite lineages adapted to C. ehrhardti and C. paleatus. This may be a common event within the Gyrodactylidae, adding a yet unreported mode of adaptive speciation that helps to understand its rate of diversification.  相似文献   

7.
Gyrodactylus pictae n. sp. is recorded from Poecilia picta in heterospecific shoals with the guppy P.reticulata in Northern Trinidad. G. pictae is morphologically similar to G. turnbulli Harris, 1986, but the hamuli and marginal hooks are slightly smaller and more gracile. The toe and the point of the marginal hook have a distinctly different shape, providing the best morphological characters for distinguishing the two species. The rDNA ITS1 and ITS2 sequences differ from those of G. turnbulli (the closest relative) by >5, suggesting that these two taxa are not sibling species. The origin of the two species on poeciliids of the subgenus Micropoecilia is discussed, and it is suggested that this may represent a case of host–parasite co-evolution.  相似文献   

8.
The mechanisms by which parasites can mediate the interactions between species have received increased interest in recent years. Nonetheless, most research has focused on the role of shared parasites as mediators of interspecific competition. Here, we explore the relative effects of Gyrodactylus specialist ectoparasites of Trinidadian guppies Poecilia reticulata on competition between their host and juveniles of the killifish Rivulus hartii. In mesocosms that replicate natural streams, we exposed guppies to only competitors, to only parasites, to both parasites and competitors, or the absence of both. Consistent with previous studies, we found that female guppies grew significantly less where only Gyrodactylus were present, and this was regardless of infection status or parasite load. Surprisingly, this effect of Gyrodactylus on the growth of female guppies was greatly reduced when both parasites and competitors were present in the mesocosms. We conclude that guppies can mediate the effects of Gyrodactylus on competition with Rivulus, by adaptively fine‐tuning their phenotype when simultaneously facing multiple enemies.  相似文献   

9.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

10.
Males are typically the sicker sex. Data from multiple taxa indicate that they are more likely to be infected with parasites, and are less “tolerant,” or less able to mitigate the fitness costs of a given infection, than females. One cost of infection for many animals is an increased probability of being captured by a predator. A clear, hitherto untested, prediction is therefore that this parasite‐induced vulnerability to predation is more pronounced among males than females. We tested this prediction in the sexually size dimorphic guppy, Poecilia reticulata, in which females are typically larger than males. We either sham or experimentally infected guppies with Gyrodactylus turnbulli, elicited their escape response using an established protocol and measured the distance they covered during 60 ms. To discriminate between the effects of body size and those of other inherent sex differences, we size‐matched fish across treatment groups. Infection with G. turnbulli reduced the distance covered during the escape response of small adults by 20.1%, whereas that of large fish was unaffected. This result implies that parasite‐induced vulnerability to predation is male‐biased in the wild: although there was no difference in escape response between our experimentally size‐matched groups of males and females, males are significantly smaller across natural guppy populations. These results are consistent with Bateman's principle for immunity: Natural selection for larger body sizes and longevity in females seems to have resulted in the evolution of increased infection tolerance. We discuss the potential implications of sex‐ and size‐biased parasite‐induced vulnerability to predation for the evolutionary ecology of this host–parasite interaction in natural communities.  相似文献   

11.
Deep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like Wolbachia that manipulate host reproduction. Phengaris butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two Phengaris species based on divergent mtDNA sequences. Since Phengaris species are highly endangered, the existence of cryptic species would have drastic consequences for conservation and management. We tested for cryptic speciation and alternative scenarios in P. teleius and P. nausithous based on a comprehensive sample across their Palaearctic ranges using COI gene sequences, nuclear microsatellites and tests for Wolbachia. In both species a deep mitochondrial split occurring 0.65–1.97 myrs ago was observed that did not correspond with microsatellite data but was concordant with Wolbachia infection. Haplotypes previously attributed to cryptic species were part of the Wolbachia-infected clades. In both species remaining phylogeographic structure was largely consistent between mitochondrial and nuclear genomes. In P. teleius several mitochondrial and nuclear groups were observed in East Asia while a single haplogroup and nuclear cluster prevailed across continental Eurasia. Neutrality tests suggested rapid demographic expansion into that area. In contrast, P. nausithous had several mitochondrial and nuclear groups in Europe, suggesting a complex phylogeographic history in the western part of the species range. We conclude that deep intraspecific divergences found in DNA barcode studies do not necessarily need to represent cryptic speciation but instead can be due to both infection by Wolbachia and phylogeographic structure.  相似文献   

12.
Aim We investigated the geographical pattern of genetic divergence and demographic history in the prodoxid moth Greya obscura throughout its entire geographical range in far western North America and compared it to the geographical patterns found in a previously studied species, Greya politella, which co‐occurs over the same range, in the same habitats, and on the same host plants. Location The study included sites distributed throughout the California Floristic Province. Methods We used analysis of cytochrome c oxidase subunit I (COI) and amplified fragment length polymorphisms to evaluate the pattern and history of genetic continuity among populations. Results Greya obscura populations show a history of spatial expansion with considerable haplotype diversity in the centre of the geographical range. As with G. politella, some range‐edge populations of G. obscura are sufficiently divergent (6.7% in COI) to be considered as potentially cryptic species. Greya obscura and G. politella, however, differ in the specific range‐edge sites showing greatest genetic divergence and cryptic speciation. Main conclusions These results corroborate the view that range edges are important cradles of divergence and speciation. In addition, the results indicate that the geographical pattern of divergence at edges may differ even among closely related species occupying the same habitats and using the same hosts.  相似文献   

13.

Background

Molecular genetic studies are revealing an increasing number of cryptic lineages or species, which are highly genetically divergent but apparently cannot be distinguished morphologically. This observation gives rise to three important questions: 1) have these cryptic lineages diverged in phenotypic traits that may not be obvious to humans; 2) when cryptic lineages come into secondary contact, what are the evolutionary consequences: stable co-existence, replacement, admixture or differentiation and 3) what processes influence the evolutionary dynamics of these secondary contact zones?

Methodology/Principal Findings

To address these questions, we first tested whether males of the Iberian lizard Lacerta schreiberi from two highly genetically divergent, yet morphologically cryptic lineages on either side of an east-west secondary contact could be differentiated based on detailed analysis of morphology, coloration and parasite load. Next, we tested whether these differences could be driven by pre-copulatory intra-sexual selection (male-male competition). Compared to eastern males, western males had fewer parasites, were in better body condition and were more intensely coloured. Although subtle environmental variation across the hybrid zone could explain the differences in parasite load and body condition, these were uncorrelated with colour expression, suggesting that the differences in coloration reflect heritable divergence. The lineages did not differ in their aggressive behaviour or competitive ability. However, body size, which predicted male aggressiveness, was positively correlated with the colour traits that differed between genetic backgrounds.

Conclusions/Significance

Our study confirms that these cryptic lineages differ in several aspects that are likely to influence fitness. Although there were no clear differences in male competitive ability, our results suggest a potential indirect role for intra-sexual selection. Specifically, if lizards use the colour traits that differ between genetic backgrounds to assess the size of potential rivals or mates, the resulting fitness differential favouring western males could result in net male-mediated gene flow from west to east across the current hybrid zone.  相似文献   

14.
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution).  相似文献   

15.
The host specificity of blood parasites recovered from a survey of 527 birds in Cameroon and Gabon was examined at several levels within an evolutionary framework. Unique mitochondrial lineages of Haemoproteus were recovered from an average of 1.3 host species (maximum = 3) and 1.2 host families (maximum = 3) while lineages of Plasmodium were recovered from an average of 2.5 species (maximum = 27) and 1.6 families (maximum = 9). Averaged within genera, lineages of both Plasmodium and Haemoproteus were constrained in their host distribution relative to random expectations. However, while several individual lineages within both genera exhibited significant host constraint, host breadth varied widely among related lineages, particularly within the genus Plasmodium. Several lineages of Plasmodium exhibited extreme generalist host-parasitism strategies while other lineages appeared to have been constrained to certain host families over recent evolutionary history. Sequence data from two nuclear genes recovered from a limited sample of Plasmodium parasites indicated that, at the resolution of this study, inferences regarding host breadth were unlikely to be grossly affected by the use of parasite mitochondrial lineages as a proxy for biological species. The use of divergent host-parasitism strategies among closely related parasite lineages suggests that host range is a relatively labile character. Since host specificity may also influence parasite virulence, these results argue for considering the impact of haematozoa on avian hosts on a lineage-specific basis.  相似文献   

16.
Pairs of obligate social parasites and their hosts, where some of the parasites have recently diverged from their host through intraspecific social parasitism, provide intriguing systems for studying the modes and processes of speciation. Such speciation, probably in sympatry, has also been propounded in the ant Myrmica rubra and its intraspecific social parasite. In this species, parasitism is associated with queen size dimorphism, and the small microgyne has become a social parasite of the large macrogyne. Here, we investigated the genetic divergence of the host and the parasite queen morphs in 11 localities in southern Finland, using nuclear and mitochondrial markers of queens and workers. We formulated and tested four speciation‐related hypotheses that differed in the degree of genetic divergence between the morphs. The queen morphs were genetically distinct from each other with little hybridization. In the nuclear data, when localities were nested within queen morphs in the hierarchical amova , 39% of the genetic variation was explained by the queen morph (standardized F'CT = 0.63, uncorrected FCT = 0.39), whereas 18% was explained by the locality (F'SC = 0.39, FSC = 0.29). This result corroborated the hypothesis of advanced sympatric speciation. In contrast, the mitochondrial DNA could not settle between the hierarchical levels of locality and queen morph, thus substantiating equally the hypotheses of incipient and advanced sympatric speciation. Together, our results support the view that the microgynous parasite has genetically diverged from its macrogynous host to the level of a nascent species.  相似文献   

17.
Phylogeographic studies frequently reveal multiple morphologically cryptic lineages within species. What is not yet clear is whether such lineages represent nascent species or evolutionary ephemera. To address this question, we compare five contact zones, each of which occurs between ecomorphologically cryptic lineages of skinks from the rainforests of the Australian Wet Tropics. Although the contacts probably formed concurrently in response to Holocene expansion from glacial refugia, we estimate that the divergence times (τ) of the lineage pairs range from 3.1 to 11.5 Ma. Multi-locus analyses of the contact zones yielded estimates of reproductive isolation that are tightly correlated with divergence time and, for lineages with older divergence times (τ > 5 Myr), substantial. These results show that phylogeographic splits of increasing depth represent stages along the speciation continuum, even in the absence of overt change in ecologically relevant morphology.  相似文献   

18.
Understanding and interpreting the host plant interactions of “generalist” herbivorous insects requires that species limits are accurately defined, as such taxa frequently harbour cryptic species with restricted host use. We tested for the presence of cryptic species across different host plant species in Australian Frankliniella schultzei using a combination of gene sequencing and newly developed microsatellite markers. We detect deep divergence between three colour morphs (black, brown and yellow) but no discordance between mitochondrial and nuclear genes in areas of sympatry, indicating the presence of at least three species in Australia (and potentially six globally). Microsatellite markers were developed for the brown species but could not be amplified in the black or yellow species because the divergence between them is too great. When applied to six populations across Queensland and New South Wales the microsatellites showed high levels of gene flow across thrips collected from Gossypium hirsutum (cotton), Hibiscus rosa-sinensis and Malvaviscus arboreus, and over distances of at least 950 km, indicating considerable movement by these insects and no host-associated genetic differentiation in the brown species. Significantly, the divergence between the three species in Australia was not associated with any noticeable host specialisation. The substantial overlap in geographical distribution and host plant range raises questions about the process of speciation in generalist insects. Our results provide the basis from which detailed quantification of relative host use can be conducted for each species within the F. schultzei complex; this next step is crucial to fully understanding the host plant relationships of each and, thus, the basis of their speciation.  相似文献   

19.
The genus Basidiophora has long been thought to contain only two species, Basidiophora entospora and Basidiophora kellermanii, the latter of which was transferred to a newly described monotypic genus, Benua, at the end of the twentieth century, leaving Basidiophora monotypic, despite its vast host range, including a member of the Eupatoriae and several genera in the subfamily Asteroideae of the Asteraceae. Using historic herbarium specimens, we demonstrate that while Benua kellermanii is genetically highly homogenous, at least seven distinct phylogenetic lineages exist within Basidiophora, which, based on sequence divergence, most likely constitute hitherto overlooked cryptic species. As the specimens from Symphyotrichum novae-angliae formed a well-supported clade with little variation, we consider Peronospora simplex described on this host as an independent species, which is transferred to the genus Basidiophora in this study. The phylogeny of the pathogens corresponds well to the phylogeny of the respective hosts, which is unusual in downy mildews and might hint at clade-limited colonisation and subsequent radiation to closely related hosts of Astereae or even suggest a co-evolution scenario. Our findings provide further evidence that species with assumed broad host ranges should be thoroughly evaluated with respect to their phylogenetic relationships, especially in biotrophic genera with only limited morphological diversity. In some cases, host specificity of genetically divergent lineages might be the only phenotypic trait remaining for species delimitation. Future detailed morphological comparisons are needed to reveal if the seemingly cryptic species of Basidiophora can be distinguished based on subtle morphological characteristics.  相似文献   

20.
Heterogeneous exposure to parasites may contribute to host species differentiation. Hosts often harbour multiple parasite species which may interact and thus modify each other’s effects on host fitness. Antagonistic or synergistic interactions between parasites may be detectable as niche segregation within hosts. Consequently, the within-host distribution of different parasite taxa may constitute an important axis of infection variation among host populations and species. We investigated the microhabitat distributions and species interactions of gill parasites (four genera) infecting 14 sympatric cichlid species in Lake Victoria, Tanzania. We found that the two most abundant ectoparasite genera (the monogenean Cichlidogyrus spp. and the copepod Lamproglena monodi) were non-randomly distributed across the host gills and their spatial distribution differed between host species. This may indicate microhabitat selection by the parasites and cryptic differences in the host–parasite interaction among host species. Relationships among ectoparasite genera were synergistic: the abundances of Cichlidogyrus spp. and the copepods L. monodi and Ergasilus lamellifer tended to be positively correlated. In contrast, relationships among morphospecies of Cichlidogyrus were antagonistic: the abundances of morphospecies were negatively correlated. Together with niche overlap, this suggests competition among morphospecies of Cichlidogyrus. We also assessed the reproductive activity of the copepod species (the proportion of individuals carrying egg clutches), as it may be affected by the presence of other parasites and provide another indicator of the species specificity of the host–parasite relationship. Copepod reproductive activity did not differ between host species and was not associated with the presence or abundance of other parasites, suggesting that these are generalist parasites, thriving in all cichlid species examined from Lake Victoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号