首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.  相似文献   

3.
The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies.  相似文献   

4.
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.  相似文献   

5.
Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample‐specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)‐reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.  相似文献   

6.
7.
The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 μM in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.  相似文献   

8.
9.
Acetate amendment at uranium contaminated sites in Rifle, CO. leads to an initial bloom of Geobacter accompanied by the removal of U(VI) from the groundwater, followed by an increase of sulfate‐reducing bacteria (SRBs) which are poor reducers of U(VI). One of the challenges associated with bioremediation is the decay in Geobacter abundance, which has been attributed to the depletion of bio‐accessible Fe(III), motivating the investigation of simultaneous amendments of acetate and Fe(III) as an alternative bioremediation strategy. In order to understand the community metabolism of Geobacter and SRBs during artificial substrate amendment, we have created a genome‐scale dynamic community model of Geobacter and SRBs using the previously described Dynamic Multi‐species Metabolic Modeling framework. Optimization techniques are used to determine the optimal acetate and Fe(III) addition profile. Field‐scale simulation of acetate addition accurately predicted the in situ data. The simulations suggest that batch amendment of Fe(III) along with continuous acetate addition is insufficient to promote long‐term bioremediation, while continuous amendment of Fe(III) along with continuous acetate addition is sufficient to promote long‐term bioremediation. By computationally minimizing the acetate and Fe(III) addition rates as well as the difference between the predicted and target uranium concentration, we showed that it is possible to maintain the uranium concentration below the environmental safety standard while minimizing the cost of chemical additions. These simulations show that simultaneous addition of acetate and Fe(III) has the potential to be an effective uranium bioremediation strategy. They also show that computational modeling of microbial community is an important tool to design effective strategies for practical applications in environmental biotechnology. Biotechnol. Bioeng. 2012; 109: 2475–2483. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Dissimilatory iron-reducing bacteria are commonly found in microbial communities of aromatic hydrocarbon-contaminated subsurface environments where they often play key role in the degradation of the contaminants. The Siklós benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated area is one of the best characterized petroleum hydrocarbon-contaminated sites of Hungary. Continuous monitoring of the microbial community in the center of the contaminant plume indicated the presence of an emerging Geobacter population and a Rhodoferax phylotype highly associated with aromatic hydrocarbon-contaminated subsurface environments. The aim of the present study was to make an initial effort to enrich Rhodoferax-related and other dissimilatory iron-reducing bacteria from this environment. Accordingly, four slightly different freshwater media were used to enrich Fe(III) reducers, differing only in the form of nitrogen source (organic, inorganic nitrogen or gaseous headspace nitrogen). Although enrichment of the desired Rhodoferax phylotype was not succeeded, Geobacter-related bacteria were readily enriched. Moreover, the different nitrogen sources caused the enrichment of different Geobacter species. Investigation of the diversity of benzylsuccinate synthase gene both in the enrichments and in the initial groundwater sample indicated that the Geobacter population in the center of the contaminant plume may not play a significant role in the anaerobic degradation of toluene.  相似文献   

11.
In in situ bioremediation demonstration at the Savannah River Site in Aiken, South Carolina, trichloroethylene-degrading microorganisms were stimulated by delivering nutrients to the TCE-contaminated subsurface via horizontal injection wells. Microbial and chemical monitoring of groundwater from 12 vertical wells was used to examine the effects of methane and nutrient (nitrogen and phosphorus) dosing on the methanotrophic populations and on the potential of the subsurface microbial communities to degrade TCE. Densities of methanotrophs increased 3–5 orders of magnitude during the methane- and nutrient-injection phases; this increase coincided with the higher methane levels observed in the monitoring wells. TCE degradation capacity, although not directly tied to methane concentration, responded to the methane injection, and responded more dramatically to the multiple-nutrient injection. These results support the crucial role of methane, nitrogen, and phosphorus as amended nutrients in TCE bioremediation. The enhancing effects of nutrient dosing on microbial abundance and degradative potentials, coupled with increased chloride concentrations, provided multiple lines of evidence substantiating the effectiveness of this integrated in situ bioremediation process. Received 13 November 1995/ Accepted in revised form 12 September 1996  相似文献   

12.
Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.Enzymatic reduction of U(VI) to insoluble U(IV) by dissimilatory Fe(III)-reducing bacteria (DIRB) can limit subsurface U(VI) migration (2, 19, 20). This observation provided the basis for an important new biotechnology that involves remediation of contaminated groundwater by organic amendment-based stimulation of the activities of DIRB. Despite the obvious high potential value, there are significant technological challenges that must be overcome before this approach can be deployed as a functional biotechnology. In situ U(VI) reduction rates are directly coupled with microbial physiology and community composition, both of which change as bioremediation progresses (22, 24, 28). Thus, a key need is the ability to monitor changes in microbial community membership and function as they occur, so that optimal management strategies can be implemented to achieve the desired geochemical outcomes. This challenge is significant because metal reduction occurs within pore spaces deep in the aquifer and the process is associated with vast numbers of microbial cells distributed in the subsurface.Changes in the complements of DIRB proteins should reflect shifts in microbial physiology and could be used to monitor in situ bioremediation technologies if microbial proteomes could be tracked during organic amendment. Proteomic methods have previously been used to detect physiological responses of microorganisms growing in pure culture (8, 16, 17) and in genomically characterized natural microbial communities (7, 18, 26, 34). Strain-resolved proteomic approaches (18) have the potential to also track changes in microbial community composition. Previously, the use of proteomic analysis techniques to monitor subsurface bioremediation has been precluded by the lack of metagenomic data. Here, we used seven isolate Geobacter genomes to generate a reference database against which peptide data measured using two-dimensional (2D) liquid chromatography (LC)-based high-resolution tandem mass spectrometry (MS-MS) were compared for protein identification. Although differences between environmental and isolate peptide sequences may preclude peptide identification, peptides common to multiple Geobacter types and isolates enable protein identification, and peptides unique to one isolate constrain environmental genotypes. Simultaneous analysis of community structure and function in natural microbial communities that relies upon proteomics-derived genomic insights is referred to as proteogenomics (Fig. (Fig.1).1). In the current study, a proteogenomic approach was applied to monitor the progress of an in situ U bioremediation project carried out at the Department of Energy (DOE) Integrated Field Research Challenge site in Rifle, CO. Despite strain complexity in the recovered samples, proteomic data provided insights into the community structure and physiology of planktonic Geobacter isolates in aquifer solutions as groundwater U(VI) concentrations decreased.Open in a separate windowFIG. 1.Strain-resolved proteogenomic techniques allow identification of unique peptides and constrain the genotypes present in environmental samples. (1) Proteins were predicted from the seven isolate Geobacter genomes. (2) Proteins were aligned. In the example shown, they share a conserved region (similar colors in all seven regions) and have a variable region (indicated by the variety of colors for each protein). (3) Tryptic digest patterns are used to predict peptide sequences. Proteins were extracted from the experimental sample (4) and digested into peptides by using trypsin (5). These peptides were separated using LC (6) before high-resolution mass spectrometry on a fraction of peptides from an elution peak (7) to determine the mass of the parent ions. (8) The peptides are fragmented and mass spectrometry measurements made on fragment ions. (9) Mass spectral data are matched to peptide sequences predicted in step 3 to allow peptide identification. Peptide sequences differing by only one amino acid can be identified, as shown in the spectral diagram. (10) Detected peptides are mapped onto aligned protein sequences to identify peptides shared or unique to each of the isolate species. Spectral counts can be mapped together with peptides. Where coexisting unique peptides are detected, ratios of unique spectral counts can be used to infer relative strain abundance. As shown, the identification of a unique peptide indicates that this protein is most closely related to that of G. bemidjiensis.  相似文献   

13.
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.  相似文献   

14.
15.
Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae, which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.  相似文献   

16.
Abstract Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design. Received: 19 October 1999; Accepted: 28 December 1999; Online Publication: 25 April 2000  相似文献   

17.

Background  

Pelobacter species are commonly found in a number of subsurface environments, and are unique members of the Geobacteraceae family. They are phylogenetically intertwined with both Geobacter and Desulfuromonas species. Pelobacter species likely play important roles in the fermentative degradation of unusual organic matters and syntrophic metabolism in the natural environments, and are of interest for applications in bioremediation and microbial fuel cells.  相似文献   

18.

Iron reduction mediated by Fe(III)-reducing bacteria (FeRB) occurs in aqueous environments and plays an essential role in removing contaminates in polluted freshwater lakes. Two model FeRB species, Shewanella and Geobacter, have been intensively studied because of their functions in bioremediation, iron reduction, and bioelectricity production. However, the abundance and community diversity of Shewanella and Geobacter in eutrophic freshwater lakes remain largely unknown. In this work, the distribution, abundance and biodiversity of Shewanella, Geobacter and other FeRB in the sediments of a heavily polluted lake, Chaohu Lake, China, across four successive seasons were investigated. Shewanella, Geobacter, and other FeRB were found to be widely distributed in the sediment of this heavily eutrophic lake. Geobacter was abundant with at least one order of magnitude more than Shewanella in cold seasons. Three Shewanella-related operational taxonomic units were detected and sixty one Geobacter-related operational taxonomic units were grouped into three phylogenetic clades. Thiobacillus, Desulfuromonas and Geobacter were identified as the main members of FeRB in the lake sediments. Interestingly, nutrients like carbon, nitrogen, and phosphorus were found to be the key factors governing the abundance and diversity of FeRB. Total FeRB, as well as Geobacter and Shewanella, were more abundant in the heavily eutrophic zone than those in the lightly eutrophic zone. The abundance and diversity of FeRB in the sediments of freshwater lakes were highly related with the degree of eutrophication, which imply that FeRB might have a great potential in alleviating the eutrophication and contamination in aqueous environments.

  相似文献   

19.
20.
Field experiments were conducted to assess the potential for anaerobic biostimulation to enhance BTEX biodegradation under fermentative methanogenic conditions in groundwater impacted by a biodiesel blend (B20, consisting of 20 % v/v biodiesel and 80 % v/v diesel). B20 (100 L) was released at each of two plots through an area of 1 m2 that was excavated down to the water table, 1.6 m below ground surface. One release was biostimulated with ammonium acetate, which was added weekly through injection wells near the source zone over 15 months. The other release was not biostimulated and served as a baseline control simulating natural attenuation. Ammonium acetate addition stimulated the development of strongly anaerobic conditions, as indicated by near-saturation methane concentrations. BTEX removal began within 8 months in the biostimulated source zone, but not in the natural attenuation control, where BTEX concentrations were still increasing (due to source dissolution) 2 years after the release. Phylogenetic analysis using quantitative PCR indicated an increase in concentration and relative abundance of Archaea (Crenarchaeota and Euryarchaeota), Geobacteraceae (Geobacter and Pelobacter spp.) and sulfate-reducing bacteria (Desulfovibrio, Desulfomicrobium, Desulfuromusa, and Desulfuromonas) in the biostimulated plot relative to the control. Apparently, biostimulation fortuitously enhanced the growth of putative anaerobic BTEX degraders and associated commensal microorganisms that consume acetate and H2, and enhance the thermodynamic feasibility of BTEX fermentation. This is the first field study to suggest that anaerobic-methanogenic biostimulation could enhance source zone bioremediation of groundwater aquifers impacted by biodiesel blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号