首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petroleum and naphthalene (example of PAHs) degrading Streptomyces spp. isolates AB1, AH4, and AM2 were recovered from surface soils at Mitidja plain (North of Algeria). The degradation efficiencies were examined by HPLC and GC–MS analysis and the results showed that the biosurfactant producing isolates AB1, AH4 and AM2 could remove 82.36%, 85.23% and 81.03% of naphthalene after 12 days of incubation, respectively. During naphthalene degradation, a slight decrease in pH values was recorded for the three studied strains. Degradation metabolites were identified using GC–MS analysis of ethyl acetate extracts of the cell free-culture. The metabolism of degradation proceeds via the phthalic acid pathway for the three strains. Moreover, the selected strains showed an important degradation of the aliphatic fraction present in crude oil after 30 days of incubation. The finding suggests that the selected strains are suitable candidates for practical field application for effective in situ bioremediation of hydrocarbon-contaminated sites.  相似文献   

2.
3.
Polyhydroxybutyrate is a microbial polyester that can be produced from renewable resources, and is degraded by the enzyme polyhydroxybutyrate depolymerase. The crystal structures of polyhydroxybutyrate depolymerase from Penicillium funiculosum and its S39 A mutant complexed with the methyl ester of a trimer substrate of (R)-3-hydroxybutyrate have been determined at resolutions of 1.71 A and 1.66 A, respectively. The enzyme is comprised of a single domain, which represents a circularly permuted variant of the alpha/beta hydrolase fold. The catalytic residues Ser39, Asp121, and His155 are located at topologically conserved positions. The main chain amide groups of Ser40 and Cys250 form an oxyanion hole. A crevice is formed on the surface of the enzyme, to which a single polymer chain can be bound by predominantly hydrophobic interactions with several hydrophobic residues. The structure of the S39A mutant-trimeric substrate complex reveals that Trp307 is responsible for the recognition of the ester group adjacent to the scissile group. It is also revealed that the substrate-binding site includes at least three, and possibly four, subsites for binding monomer units of polyester substrates. Thirteen hydrophobic residues, which are exposed to solvent, are aligned around the mouth of the crevice, forming a putative adsorption site for the polymer surface. These residues may contribute to the sufficient binding affinity of the enzyme for PHB granules without a distinct substrate-binding domain.  相似文献   

4.
5.
An M protein or an M protein-like substance was found to be present in a large proportion of group G streptococci isolated from animals and humans. Forty-seven percent of the isolates from cat throats and 38% of the isolates from the vagina of cats were able to multiply in human blood. Only 14% of the human isolates of group G isolated from various anatomical sites and sources were able to multiply in fresh human blood. Deoxyribonuclease was produced by 81% of cat vagina isolates, by 80% of cat throat isolates and by only 27% of the group G isolates from humans. Thirty-five percent of the cat isolates but only 5% of the human isolates were able to both grow in blood and produce DNase.  相似文献   

6.
Nie  Hongtao  Zheng  Mengge  Wang  Zhengxing  Xu  Qiaoyue  Yin  Zhihui  Zhang  Yanming  Yan  Xiwu 《Functional & integrative genomics》2021,21(3-4):341-353
Functional & Integrative Genomics - Growth is one of the most important traits of aquaculture breeding programs. Understanding the mechanisms underlying growth differences between individuals...  相似文献   

7.
A novel family of conjugative plasmids from Sulfolobus comprising the active variants pING1, -4, and -6 and the functionally defective variants pING2 and -3, which require the help of an active variant for spreading, has been extensively characterized both functionally and molecularly. In view of the sparse similarity between bacterial and archaeal conjugation and the lack of a practical genetic system for Sulfolobus, we compared the functions and sequences of these variants and the previously described archaeal conjugative plasmid pNOB8 in order to identify open reading frames (ORFs) and DNA sequences that are involved in conjugative transfer and maintenance of these plasmids in Sulfolobus. The variants pING4 and -6 are reproducibly derived from pING1 in vivo by successive transpositions of an element from the Sulfolobus genome. The small defective but mobile variants pING2 and -3, which both lack a cluster of highly conserved ORFs probably involved in plasmid transfer, were shown to be formed in vivo by recombinative deletion of the larger part of the genomes of pING4 and pING6, respectively. The efficient occurrence of these recombination processes is further evidence for the striking plasticity of the Sulfolobus genome.  相似文献   

8.
Two sister species of horse mackerel (Trachurus trachurus and T. capensis) are described that are intensively harvested in East Atlantic waters. To address long-standing uncertainties as to their respective geographical ranges, overlap and intraspecific population structure this study combined genetic (mitochondrial DNA and microsatellite) analysis and targeted sampling of the hitherto understudied West African coast. mtDNA revealed two reciprocally monophyletic clades corresponding to each species with interspecies nuclear differentiation supported by FST values. The T. trachurus clade was found across the north-east Atlantic down to Ghana but was absent from Angolan and South African samples. The T. capensis clade was found only in South Africa, Angola and a single Ghanaian individual. This pattern suggests that both species may overlap in the waters around Ghana. The potential for cryptic hybridization and/or indiscriminate harvesting of both species in the region is discussed. For T. capensis mtDNA supports high gene flow across the Benguela upwelling system, which fits with the species' ecology. The data add to evidence of a lack of significant genetic structure throughout the range of T. trachurus though the assumption of demographic panmixia is cautioned against. For both species, resolution of stock recruitment heterogeneity relevant to fishery management, as well as potential hybridization, will require more powerful genomic analyses.  相似文献   

9.
Ten bacterial strains were isolated by enrichment culture, using as carbon sources either aliphatics or an aromatic-polar mixture. Oxygen uptake rate was used as a criterion to determine culture transfer timing at each enrichment stage. Biodegradation of aliphatics (10,000 mg L(-1)) and an aromatic-polar mixture (5000 mg L(-1), 2:1) was evaluated for each of the bacterial strains and for a defined culture made up with a standardized mixture of the isolated strains. Degradation of total hydrocarbons (10,000 mg L(-1)) was also determined for the defined mixed culture. Five bacterial strains were able to degrade more than 50% of the aliphatic fraction. The most extensive biodegradation (74%) was obtained with strain Bs 9A, while strains Ps 2AP and UAM 10AP were able to degrade up to 15% of the aromatic-polar mixture. The defined mixed culture degraded 47% of the aliphatics and 6% of the aromatic-polar mixture. The defined mixed culture was able to degrade about 40% of the aliphatic fraction and 26% of the aromatic fraction when grown in the presence of total hydrocarbons, while these microorganisms did not consume the polar hydrocarbons fraction. The proposed strategy that combines enrichment culture together with oxygen uptake rate allowed the isolation of bacterial strains that are able to degrade specific hydrocarbons fractions at high consumption rates.  相似文献   

10.
The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair. The lagging strand DNA replication protein, Dna2, has demonstrated a unique localization to telomeres and a role in de novo telomere biogenesis, prompting us to study the activities of Dna2 on G4 DNA-containing substrates. We find that yeast Dna2 binds with 25-fold higher affinity to G4 DNA formed from yeast telomere repeats than to single-stranded DNA of the same sequence. Human Dna2 also binds G4 DNAs. The helicase activities of both yeast and human Dna2 are effective in unwinding G4 DNAs. On the other hand, the nuclease activities of both yeast and human Dna2 are attenuated by the formation of G4 DNA, with the extent of inhibition depending on the topology of the G4 structure. This inhibition can be overcome by replication protein A. Replication protein A is known to stimulate the 5'- to 3'-nuclease activity of Dna2; however, we go on to show that this same protein inhibits the 3'- to 5'-exo/endonuclease activity of Dna2. These observations are discussed in terms of possible roles for Dna2 in resolving G4 secondary structures that arise during Okazaki fragment processing and telomere lengthening.  相似文献   

11.
Rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from petroleum-contaminated soil was investigated. The effects of carbon, nitrogen and carbon to nitrogen ratio on biosurfactant production were examined using mineral salts medium as the growth medium. The tenso-active properties (surface activity and critical micelle concentrations of the produced biosurfactant were also evaluated. The best carbon source, nitrogen source were glucose and sodium nitrate giving rhamnolipid yields of 5.28 and 4.38 g l−1, respectively. The maximum rhamnolipid production of 5.46 g l−1 was at C/N (glucose/sodium nitrate) of 22. The rhamnolipid biosurfactant reduced the surface tension of water from 72 to ~37 mN/m. It also has critical micelle concentration of ~28 mg l−1. Thus, the results presented in our reports show that the produced rhamnolipid can find wide applications in various bioremediation activities such as enhanced oil recovery and petroleum degradation.  相似文献   

12.
13.
Induction and secretion of acid phosphatases(APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate(Pi) deprivation. In Arabidopsis, there are 29 purple acid phosphatase(AtPAP)genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock‐down T‐DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in‐gel and quantitative APase enzyme assays,we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAP10is mainly a secreted APase. On Pi‐deficient(P) medium or Pmedium supplemented with the organophosphates ADP and fructose‐6‐phosphate(Fru‐6‐P), growth of atpap10 was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type(WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on Por P medium supplemented with ADP or Fru‐6‐P. Interestingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.  相似文献   

14.
NanoLC-MS/MS analysis was used to characterize the phosphorylation pattern in vivo of CDC25B3 (phosphatase splice variant 1) expressed in a human cell line and to compare it to the phosphorylation of CDC25B3 by Cdk1/cyclin B and Chk1 in vitro. Cellular CDC25B3 was purified from U2OS cells conditionally overexpressing the phosphatase. Eighteen sites were detectably phosphorylated in vivo. Nearly all existing (S/T)P sites were phosphorylated in vivo and in vitro. Eight non(S/T)P sites were phosphorylated in vivo. All these sites could be phosphorylated by kinase Chk1, which phosphorylated a total of 11 sites in vitro, with consensus sequence (R/K) X(2-3) (S/P)-non P. Nearly half of the sites identified in this study were not previously described and were not homologous to sites reported to be phosphorylated in other CDC25 species. We also show that in vivo a significant part of CDC25B molecules can be hyperphosphorylated, with up to 13 phosphates per phosphatase molecule.  相似文献   

15.
A new yeast strain was isolated from sugarcane cultivation field which was able to utilize lindane as sole carbon source for growth in mineral medium. The yeast was identified and named as Candida sp. VITJzN04 based on a polyphasic approach using morphological, biochemical and 18S rDNA, D1/D2 and ITS sequence analysis. The isolated yeast strain efficiently degraded 600 mg L?1 of lindane within 6 days in mineral medium under the optimal conditions (pH 7; temperature 30 °C and inoculum dosage 0.06 g L?1) with the least half-life of 1.17 days and degradation constant of 0.588 per day. Lindane degradation was tested with various kinetic models and results revealed that the reaction could be described best by first-order and pseudo first-order models. In addition, involvement of the enzymes viz. dechlorinase, dehalogenase, dichlorohydroquinone reductive dechlorinase, lignin peroxidase and manganese peroxidase was noted during lindane degradation. Addition of H2O2 in the mineral medium showed 32 % enhancement of lindane degradation within 3 days. Based on the metabolites identified by GC–MS and FTIR analysis, sequential process of lindane degradation by Candida VITJzN04 was proposed. To the best of our knowledge, this is the first report of isolation and characterization of lindane-degrading Candida sp. and elucidation of enzyme systems during the degradation process.  相似文献   

16.
Fusarium species from agricultural crops have been well studied with respect to toxin production and genetic diversity, while similar studies of communities from nonagricultural plants are much more limited. We examined 72 Fusarium isolates from a native North American tallgrass prairie and found that Gibberella intermedia (Fusarium proliferatum), Gibberella moniliformis (Fusarium verticillioides), and Gibberella konza (Fusarium konzum) dominated. Gibberella thapsina (Fusarium thapsinum) and Gibberella subglutinans (Fusarium subglutinans) also were recovered, as were seven isolates that could not be assigned to any previously described species on the basis of either morphological or molecular characters. In general, isolates from the prairie grasses produced the same toxins in quantities similar to those produced by isolates of the same species recovered from agricultural hosts. The G. konza isolates produce little or no fumonisins (up to 120 micro g/g by one strain), and variable but generally low to moderate amounts of beauvericin (4 to 320 micro g/g) and fusaproliferin (50 to 540 micro g/g). Toxicity to Artemia salina larvae within most species was correlated with the concentration of either beauvericin or fusaproliferin produced. Organic isolates from some cultures of G. moniliformis were highly toxic towards A. salina even though they produced little, if any, beauvericin or fusaproliferin. Thus, additional potentially toxigenic compounds may be synthesized by G. moniliformis strains isolated from prairie grasses. The Fusarium community from these grasses appears to contain some species not found in surrounding agricultural communities, including some that probably are undescribed, and could be capable of serving as a reservoir for strains of potential agricultural importance.  相似文献   

17.
She  Yang  Gao  Xiang  Jing  Xin  Wang  Jing  Dong  Yibei  Cui  Jinzi  Xue  Huidan  Li  Zhengke  Zhu  Derui 《Journal of applied phycology》2022,34(3):1281-1291
Journal of Applied Phycology - A new strain of Eustigmatophyceae, Vischeria sp. WL1, which accumulates oil droplets in the cells, was isolated from a large biological soil crust in the arid steppes...  相似文献   

18.
19.
AIMS: Three broadly used typing methods were employed in order to assess and compare the identification and classification of environmental Pseudomonas strains. The reproducibility, typeability and discriminatory power of the methods were also compared to evaluate their application. Finally, the potential impact on public health of the isolates is to be discussed. METHODS AND RESULTS: Pseudomonas strains (160) isolated from the aquatic environment in Greece and identified by a rapid identification commercially available system (API20NE), were subjected to whole-cell protein electrophoresis (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and Randomly Amplified Polymorphic DNAs (RAPD) using two 10-mer primers. In general, the obtained results were in agreement. Twenty isolates that could not be identified by the API20NE system were classified by the other methods. CONCLUSIONS: Rapid identification systems may serve only for a first rough identification of environmental Pseudomonads. In order to acquire further information, so that conclusions about their role in the ecosystem and human health could be drawn, other phenotypic or genotypic methods have to be applied. SIGNIFICANCE AND IMPACT OF STUDY: It is important, from a public health point of view, to monitor the identities of environmental Pseudomonas isolates using specific methods due to their ubiquity, heterogeneity and their pathogenicity, either established or potential.  相似文献   

20.
The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号