首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processing of the fibrillar procollagen precursors to mature collagens is an essential requirement for fibril formation. The enzymes involved in these events are known as the procollagen N and C proteinases. The latter, which cleaves the C-propeptides of the fibrillar procollagens I-III, is identical to the previously described bone morphogenetic protein-1 (BMP-1). Surprisingly, unlike the other fibrillar collagens, the processing of the C-propeptide domain of the procollagen V homotrimer was found to be mediated by furin rather than BMP-1. However, the presence of putative BMP-1 cleavage sites in the alpha1(V) C-propeptide sequence prompted us to reconsider the procollagen V C-propeptide cleavage by BMP-1. Using a recombinant system to produce substantial amounts of the proalpha1(V) homotrimer, we have previously shown that the C-propeptide is spontaneously released in the culture medium. The trimeric C-propeptide fragment, resulting from the furin cleavage, still encompassed the predicted BMP-1 cleavage sites. It was purified and tested as a substrate for BMP-1. In parallel, the release of the C-propeptide in the culture medium was inhibited by the addition of a specific furin inhibitor, allowing the re-examination of BMP-1 activity on the intact molecule. We showed that BMP-1 does cleave both substrates at one of the two predicted C-proteinase cleavage sites. Our results favor a role for PCP/BMP-1 in physiological C-terminal processing of procollagen V and imply a general mechanism for fibrillar collagen C-terminal processing.  相似文献   

2.
A new system was developed for studying the assembly of collagen fibrils in vitro. A partially purified enzyme preparation containing both procollagen N-proteinase and c-proteinase (EC 3.4.24.00) activities was used to initiate fibril formation by removal of the N- and C-propeptides from type I procollagen in a physiological buffer at 35-37 degrees C. The kinetics of fibril formation were similar to those observed for fibril formation with tissue-extracted collagen in the same buffer system, except that the lag phase was longer. The longer lag phase was in part accounted for by the time required to convert procollagen to collagen. Similar results were obtained when an intermediate containing the C-propeptide but not the N-propeptide was used as a substrate. Therefore, removal of the c-propeptide appeared to be the critical step for fibril formation under the conditions used here. The fibrils formed by enzymic cleavage of procollagen or pCcollagen appeared microscopically to be more tightly packed than fibrils formed directly from collagen under the same conditions. This impression was confirmed by the observation that the fibrils formed by cleavage of procollagen were stable to temperatures 1.5-2 degrees C higher than fibers formed from extracted collagen under the same conditions. When smaller amounts of procollagen proteinase were used, the rate of cleavage of procollagen to collagen was markedly reduced. The fibrils which formed under these conditions were up to 3 micrometers in diameter. Some appeared to contain branch points.  相似文献   

3.
Cardiac interstitial fibrillar collagen accumulation, such as that associated with chronic pressure overload (PO), has been shown to impair left ventricular diastolic function. Therefore, insight into cellular mechanisms that mediate excessive collagen deposition in the myocardium is pivotal to this important area of research. Collagen is secreted as a soluble procollagen molecule with NH(2)- and COOH (C)-terminal propeptides. Cleavage of these propeptides is required for collagen incorporation to insoluble collagen fibrils. The C-procollagen proteinase, bone morphogenic protein 1, cleaves the C-propeptide of procollagen. Procollagen C-endopeptidase enhancer (PCOLCE) 2, an enhancer of bone morphogenic protein-1 activity in vitro, is expressed at high levels in the myocardium. However, whether the absence of PCOLCE2 affects collagen content at baseline or after PO induced by transverse aortic constriction (TAC) has never been examined. Accordingly, in vivo procollagen processing and deposition were examined in wild-type (WT) and PCOLCE2-null mice. No significant differences in collagen content or myocardial stiffness were detected in non-TAC (control) PCOLCE2-null versus WT mice. After TAC-induced PO, PCOLCE2-null hearts demonstrated a lesser collagen content (PCOLCE2-null TAC collagen volume fraction, 0.41% ± 0.07 vs. WT TAC, 1.2% ± 0.3) and lower muscle stiffness compared with WT PO hearts [PCOLCE2-null myocardial stiffness (β), 0.041 ± 0.002 vs. WT myocardial stiffness, 0.065 ± 0.001]. In addition, in vitro, PCOLCE2-null cardiac fibroblasts exhibited reductions in efficiency of C-propeptide cleavage, as demonstrated by increases in procollagen α1(I) and decreased levels of processed collagen α1(I) versus WT cardiac fibroblasts. Hence, PCOLCE2 is required for efficient procollagen processing and deposition of fibrillar collagen in the PO myocardium. These results support a critical role for procollagen processing in the regulation of collagen deposition in the heart.  相似文献   

4.
Quality control within the endoplasmic reticulum (ER) is thought to be mediated by the interaction of a folding protein with one or several resident ER proteins [1]. Protein disulphide isomerase (PDI) is one such ER resident protein that has been previously shown to interact with proteins during their folding and assembly pathways [2, 3]. It has been assumed that, as a consequence of this interaction, unassembled proteins are retained within the ER. Here, we experimentally show that this is indeed the case. We have taken advantage of our previous finding that PDI interacts with procollagen chains early on in their assembly pathway [2] to address the role of this protein in directly retaining unassembled chains within the ER. Our experimental approach involved expressing individual C-propeptide domains from different procollagen chains in mammalian cells and determining the ability of these domains to interact with PDI and to be secreted. The C-propeptide from the proalpha2(I) chain was retained within the cell, where it formed a complex with PDI. Conversely, the C-propeptide from the proalpha1(III) chain did not form a complex with PDI and was secreted. Both domains were secreted, however, from a stable cell line expressing a secreted form of PDI lacking its ER retrieval signal. Hence, we have demonstrated directly that the intracellular retention of one substrate for ER quality control is due to an interaction with PDI.  相似文献   

5.
Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic protein-1 (BMP-1), which exhibits procollagen C-proteinase activity, cleaves the C-terminal propeptide from human procollagen VII. The cleavage occurs at the BMP-1 consensus cleavage site SYAA/DTAG within the NC-2 domain. Mammalian tolloid-like (mTLL)-1 and -2, two other proteases of the astacin enzyme family, were able to process procollagen VII at the same site in vitro. Immunohistochemical and genetic evidence supported the involvement of these enzymes in cleaving type VII procollagen in vivo. Both BMP-1 and mTLL-1 are expressed in the skin and in cultured cutaneous cells. A naturally occurring deletion in the human COL7A1 gene, 8523del14, which is associated with dystrophic epidermolysis bullosa and eliminates the BMP-1 consensus sequence, abolished processing of procollagen VII, and in mutant skin procollagen VII accumulated at the dermal-epidermal junction. On the other hand, deficiency of BMP-1 in the skin of knockout mouse embryos did not prevent processing of procollagen VII to mature collagen, suggesting that mTLL-1 and/or mTLL-2 can substitute for BMP-1 in the processing of procollagen VII in situ.  相似文献   

6.
The Disproportionate micromelia (Dmm) mouse has a three nucleotide deletion in Col2a1 in the region encoding the C-propeptide which results in the substitution of one amino acid, Asn, for two amino acids, Lys-Thr. Western blot and immunohistochemical analyses failed to detect type II collagen in the cartilage matrix of the homozygous mice and showed reduced levels in the matrix of heterozygous mice. Type II collagen chains localized intracellularly within the chondrocytes of homozygote and heterozygote tissues. These findings provide evidence that the expression of type II procollagen chains containing the defective C-propeptide results in an intracellular retention and faulty secretion of type II procollagen molecules. A complete absence of mature type II collagen from the homozygote cartilage and an insufficiency of type II collagen in the heterozygote cartilage explains the Dmm mouse phenotype. The integrity of the C-propeptide is thus crucial for the biosynthesis of normal type II collagen by chondrocytes.  相似文献   

7.
The culture of skin fibroblasts in the presence of 0.01% (w/v) dextran sulphate results in complete proteolytic processing of procollagen to collagen. Processing occurs predominantly via a pN-collagen intermediate, suggesting that C-propeptide cleavage occurs early during the processing pathway. The processed collagen is associated with the cell-layer fraction. This method of inducing procollagen processing was evaluated for use in detecting procollagen processing abnormalities in heritable connective-tissue diseases. Abnormal type I procollagen processing was clearly demonstrated in two cases with known defects of pN-propeptide cleavage. In one, the cleavage deficiency was due to diminished N-proteinase activity (dermatosparaxis) and in the other case (Ehler's-Danlos syndrome type VIIA) the cleavage site was deleted. In a case of osteogenesis imperfecta (type II) the slow electrophoretic migration of type I collagen alpha-chains due to over-modification of lysine was readily demonstrated. Inefficient procollagen processing was also evident in this patient, as had been previously reported [de Wet, Pihlanjaniemi, Myers, Kelly & Prockop (1983) J. Biol. Chem. 258, 7721-7728]. Thus this method of culture in the presence of dextran sulphate provides a simple and rapid procedure for the detection of procollagen processing defects and electrophoretic abnormalities.  相似文献   

8.
Mutations in collagen genes: causes of rare and some common diseases in humans   总被引:48,自引:0,他引:48  
More than 70 mutations in the two structural genes for type I procollagen (COL1A1 and COL1A2) have been found in probands with osteogenesis imperfecta, a heritable disease of children characterized by fragility of bone and other tissues rich in type I collagen. The mutations include deletions, insertions, RNA splicing mutations, and single-base substitutions that convert a codon for glycine to a codon for an amino acid with a bulkier side chain. With a few exceptions, the most severe phenotypes of the disease are explained largely by synthesis of structurally defective pro alpha chains of type I procollagen that either interfere with the folding of the triple helix or with self-assembly of collagen into fibrils. The results emphasize the extent to which the zipperlike folding of the collagen triple helix and the self-assembly of collagen fibrils depend on the principle of nucleated growth whereby a few subunits form a nucleus and the nucleus is then propagated to generate a large structure with a precisely defined architecture. The principle of nucleated growth is a highly efficient mechanism for the assembly of large structures, but biological systems that depend extensively on nucleated growth are highly vulnerable to mutations that cause synthesis of structurally abnormal but partially functional subunits. Recently, several mutations in three other collagen genes (COL2A1, COL3A1, and COL4A5) have been found in probands with genetic diseases involving tissues rich in these collagens. Most of the probands have rare genetic diseases but a few appear to have phenotypes that are difficult to distinguish from more common disorders such as osteoarthritis, osteoporosis, and aortic aneurysms. Therefore, the results suggest that mutations in procollagen genes may cause a wide spectrum of both rare and common human diseases.  相似文献   

9.
N J Bulleid  J A Dalley    J F Lees 《The EMBO journal》1997,16(22):6694-6701
The folding and assembly of procollagen occurs within the cell through a series of discrete steps leading to the formation of a stable trimer consisting of three distinct domains: the N-propeptide, the C-propeptide and the collagen triple helix flanked at either end by short telopeptides. We have established a semi-permeabilized cell system which allows us to study the initial stages in the folding and assembly of procollagen as they would occur in the intact cell. By studying the folding and assembly of the C-propeptide domain in isolation, and a procollagen molecule which lacks the C-propeptide, we have shown that this domain directs the initial association event and is required to allow triple helix formation. However, the essential function of this domain does not include triple helix nucleation or alignment, since this can occur when the C-propeptide is substituted with a single transmembrane domain. Also the telopeptide region is not involved in triple helix nucleation; however, a minimum of two hydroxyproline-containing Gly-X-Y triplets at the C-terminal end of the triple helix are required for nucleation to occur. Thus, the C-propeptide is required solely to ensure association of the monomeric chains; once these are brought together, the triple helix is able to nucleate and fold to form a correctly aligned triple helix.  相似文献   

10.
Previous observations suggested that incubating fibroblasts at elevated temperature caused over-modification of type I procollagen by post-translational enzymes because of a delay in folding of the collagen triple helix. Here, human skin fibroblasts were incubated at 40.5 instead of 37 degrees C, and the type I procollagen secreted into the medium was isolated. Analysis of the protein indicated that there was an increase of about 5 residues of hydroxylysine/alpha chain and about 1 residue of glycosylated hydroxylysine/alpha chain. Assays with procollagen N-proteinase indicated that the N-propeptide of the over-modified collagen was cleaved at a decreased rate, apparently because the over-modification altered the conformation-dependent cleavage site for the enzyme. Assays in a system for assembly of collagen into fibrils demonstrated that the over-modified protein had a higher critical concentration for self-assembly. Also, the fibrils formed from the over-modified collagen at 31 and 29 degrees C had smaller diameters than fibrils formed from normal type I collagen. The results provide direct evidence for earlier suggestions that post-translational over-modification of a fibrillar collagen can alter the morphology of the fibrils formed. The results also indicate that some of the biological consequences of the mutations in type I procollagen causing heritable disorders must be ascribed to the effects of post-translational over-modifications that frequently occur as secondary consequences of changes in the primary structure of the protein.  相似文献   

11.
The assembly of type I collagen and type I pN-collagen was studied in vitro using a system for generating these molecules enzymatically from their immediate biosynthetic precursors. Collagen generated by C-proteinase digestion of pC-collagen formed D-periodically banded fibrils that were essentially cylindrical (i.e. circular in cross-section). In contrast, pN-collagen generated by C-proteinase digestion of procollagen formed thin, sheet-like structures that were axially D-periodic in longitudinal section, of varying lateral widths (up to several microns) and uniform in thickness (approximately 8 nm). Mixtures of collagen and pN-collagen assembled to form a variety of pleomorphic fibrils. With increasing pN-collagen content, fibril cross-sections were progressively distorted from circular to lobulated to thin and branched structures. Some of these structures were similar to fibrils observed in certain heritable disorders of connective tissue where N-terminal procollagen processing is defective. The observations are considered in terms of the hypothesis that the N-propeptides are preferentially located on the surface of a growing assembly. The implications for normal diameter control of collagen fibrils in vivo are discussed.  相似文献   

12.
Knockout of the golgin giantin leads to skeletal and craniofacial defects driven by poorly studied changes in glycosylation and extracellular matrix deposition. Here, we sought to determine how giantin impacts the production of healthy bone tissue by focusing on the main protein component of the osteoid, type I collagen. Giantin mutant zebrafish accumulate multiple spontaneous fractures in their caudal fin, suggesting their bones may be more brittle. Inducing new experimental fractures revealed defects in the mineralization of newly deposited collagen as well as diminished procollagen reporter expression in mutant fish. Analysis of a human giantin knockout cell line expressing a GFP-tagged procollagen showed that procollagen trafficking is independent of giantin. However, our data show that intracellular N-propeptide processing of pro-α1(I) is defective in the absence of giantin. These data demonstrate a conserved role for giantin in collagen biosynthesis and extracellular matrix assembly. Our work also provides evidence of a giantin-dependent pathway for intracellular procollagen processing.  相似文献   

13.
Osteogenesis imperfecta (OI) is a heritable connective tissue disease characterized by bone fragility and increased risk of fractures. Up to now, mutations in at least 18 genes have been associated with dominant and recessive forms of OI that affect the production or post-translational processing of procollagen or alter bone homeostasis. Among those, SERPINH1 encoding heat shock protein 47 (HSP47), a chaperone exclusive for collagen folding in the ER, was identified to cause a severe form of OI in dachshunds (L326P) as well as in humans (one single case with a L78P mutation). To elucidate the disease mechanism underlying OI in the dog model, we applied a range of biochemical assays to mutant and control skin fibroblasts as well as on bone samples. These experiments revealed that type I collagen synthesized by mutant cells had decreased electrophoretic mobility. Procollagen was retained intracellularly with concomitant dilation of ER cisternae and activation of the ER stress response markers GRP78 and phospho-eIF2α, thus suggesting a defect in procollagen processing. In line with the migration shift detected on SDS-PAGE of cell culture collagen, extracts of bone collagen from the OI dog showed a similar mobility shift, and on tandem mass spectrometry, the chains were post-translationally overmodified. The bone collagen had a higher content of pyridinoline than control dog bone. We conclude that the SERPINH1 mutation in this naturally occurring model of OI impairs how HSP47 acts as a chaperone in the ER. This results in abnormal post-translational modification and cross-linking of the bone collagen.  相似文献   

14.
Substantial evidence supports the role of the procollagen C-propeptide in the initial association of procollagen polypeptides and for triple helix formation. To evaluate the role of the propeptide domains on triple helix formation, human recombinant type I procollagen, pN-collagen (procollagen without the C-propeptides), pC-collagen (procollagen without the N-propeptides), and collagen (minus both propeptide domains) heterotrimers were expressed in Saccharomyces cerevisiae. Deletion of the N- or C-propeptide, or both propeptide domains, from both proalpha-chains resulted in correctly aligned triple helical type I collagen. Protease digestion assays demonstrated folding of the triple helix in the absence of the N- and C-propeptides from both proalpha-chains. This result suggests that sequences required for folding of the triple helix are located in the helical/telopeptide domains of the collagen molecule. Using a strain that does not contain prolyl hydroxylase, the same folding mechanism was shown to be operative in the absence of prolyl hydroxylase. Normal collagen fibrils were generated showing the characteristic banding pattern using this recombinant collagen. This system offers new opportunities for the study of collagen expression and maturation.  相似文献   

15.
Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules.  相似文献   

16.
Tasab M  Batten MR  Bulleid NJ 《The EMBO journal》2000,19(10):2204-2211
Hsp47 is a heat-shock protein that interacts transiently with procollagen during its folding, assembly and transport from the endoplasmic reticulum (ER) of mammalian cells. It has been suggested to carry out a diverse range of functions, such as acting as a molecular chaperone facilitating the folding and assembly of procollagen molecules, retaining unfolded molecules within the ER, and assisting the transport of correctly folded molecules from the ER to the Golgi apparatus. Here we define the substrate recognition of Hsp47, demonstrating that it interacts preferentially with triple-helical procollagen molecules. The association of Hsp47 with procollagen coincides with the formation of a collagen triple helix. This demonstrates that Hsp47's role in procollagen folding and assembly is distinct from that of prolyl 4-hydroxylase. These results indicate that Hsp47 acts as a novel molecular chaperone, potentially stabilizing the correctly folded collagen helix from heat denaturation before its transport from the ER.  相似文献   

17.
Proteolytic cleavage of procollagen I to collagen I is essential for the formation of collagen fibrils in the extracellular matrix of vertebrate tissues. Procollagen is cleaved by the procollagen N- and C-proteinases, which remove the respective N- and C-propeptides from procollagen. Procollagen processing is initiated within the secretory pathway in tendon fibroblasts, which are adept in assembling an ordered extracellular matrix of collagen fibrils in vivo. It was thought that intracellular processing was restricted to the TGN (trans-Golgi network). In the present study, brefeldin A treatment of tendon explant cultures showed that N-proteinase activity is present in the resulting fused ER (endoplasmic reticulum)-Golgi compartment, but that C-proteinase activity is restricted to the TGN in embryonic chick tendon fibroblasts. In late embryonic and postnatal rat tail and postnatal mouse tail tendon, C-proteinase activity was detected in TGN and pre-TGN compartments. Preventing activation of the procollagen N- and C-proteinases with the furin inhibitor Dec-RVKR-CMK (decanoyl-Arg-Val-Lys-Arg-chloromethylketone) indicated that only a fraction of intracellular procollagen cleavage was mediated by newly activated proteinases. In conclusion, the N-propeptides are removed earlier in the secretory pathway than the C-propeptides. The removal of the C-propeptides in post-Golgi compartments most probably indicates preparation of collagen molecules for fibril formation at the cell-matrix interface.  相似文献   

18.
One of the mechanisms involved in the regulation of the fibril diameter is the retention of the N-propeptide. In sea urchin embryo, thin collagen fibrils harbor numerous extensions at their surface, which we have suggested correspond to the large N-propeptide of the 2alpha collagen chain. To investigate the function of the N-propeptide during fibrillogenesis, we engineered constructs coding for the globular region of the 2alpha N-propeptide. To obtain homotrimeric molecules, the N-telopeptide, the central triple helix and the C-propeptide of the 2alpha chain were replaced by human domains of the proalpha1(I) chain. A single restriction site allowed insertion of distinct versions of the minor triple helix of the N-propeptide. Several human cell lines were transfected, and with one of them we were able to produce intact homotrimeric procollagen molecules. Rotary shadowing of these purified molecules indicates the presence of three large 2alpha N-propeptides that are similar to the extensions present at the surface of the sea urchin thin fibrils. This cassette-vector will be useful in determining the respective contributions of the globular and minor triple helical domains of the N-propeptide in the regulation of fibril diameter.  相似文献   

19.
In many embryonic tissues, type IIA procollagen is synthesized and deposited into the extracellular matrix containing the NH(2)-propeptide, the cysteine-rich domain of which binds to bone morphogenic proteins. To investigate whether matrix metalloproteinases (MMPs) synthesized during development and disease can cleave the NH(2) terminus of type II procollagens, we tested eight types of enzymes. Recombinant trimeric type IIA collagen NH(2)-propeptide encoded by exons 1-8 fused to the lectin domain of rat surfactant protein D was used as a substrate. The latter allowed trimerization of the propeptide domain and permitted isolation by saccharide affinity chromatography. Although MMPs 1, 2, and 8 did not show cleavage, MMPs 3, 7, 9, 13, and 14 cleaved the recombinant protein both at the telopeptide region and at the procollagen N-proteinase cleavage site. MMPs 7 and 13 demonstrated other cleavage sites in the type II collagen-specific region of the N-propeptide; MMP-7 had another cleavage site close to the COOH terminus of the cysteine-rich domain. To prove that an MMP can cleave the native type IIA procollagen in situ, we demonstrated that MMP-7 removes the NH(2)-propeptide from collagen fibrils in the extracellular matrix of fetal cartilage and identified the cleavage products. Because the N-proteinase and telopeptidase cleavage sites are present in both type IIA and type IIB procollagens and the telopeptide cleavage site is retained in the mature collagen fibril, this processing could be important to type IIB procollagen and to mature collagen fibrils as well.  相似文献   

20.
The C-propeptide of type II procollagen has previously been implicated in cartilage calcification. To further characterize this propeptide, we have investigated its molecular status and intracellular distribution in bovine fetal growth plate chondrocytes, particularly within the calcifying zone, using cell isolation, Western blotting, and localization with immunofluorescence and immunogold techniques. We found that in all cells freshly isolated by collagenase digestion the C-propeptide was a component of type II pro-alpha chains. No free C-propeptide was detected intracellularly. In situ localization of the C-propeptide by immunostaining employing immunofluorescence revealed the presence of procollagen in most growth plate cells, staining being most intense in hypertrophic cells. In the latter, large dilations of the rough endoplasmic reticulum were observed. These were not found in proliferating cells and had an approximate diameter of 5 microns. With immunogold localization these, together with Golgi-derived secretory granules, stained for the C-propeptide. These combined results suggest that in all cells of the growth plate the C-propeptide is a constituent part of type II collagen pro-alpha chains, and that it is usually segregated in the rough endoplasmic reticulum at a time when, according to other studies, collagen synthesis ceases in the lower hypertrophic zone and calcification of the extracellular matrix ensues. This suggests that the intracellular translocation of type II collagen pro-alpha chains may change in hypertrophic cells at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号