首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments.  相似文献   

2.
The deposition of α-syn (α-synuclein) as amyloid fibrils and the selective loss of DA (dopamine) containing neurons in the substantia nigra are two key features of PD (Parkinson''s disease). α-syn is a natively unfolded protein and adopts an α-helical conformation upon binding to lipid membrane. Oligomeric species of α-syn have been proposed to be the pathogenic species associated with PD because they can bind lipid membranes and disrupt membrane integrity. DA is readily oxidized to generate reactive intermediates and ROS (reactive oxygen species) and in the presence of DA, α-syn form of SDS-resistant soluble oligomers. It is postulated that the formation of the α-syn:DA oligomers involves the cross-linking of DA-melanin with α-syn, via covalent linkage, hydrogen and hydrophobic interactions. We investigate the effect of lipids on DA-induced α-syn oligomerization and studied the ability of α-syn:DA oligomers to interact with lipids vesicles. Our results show that the interaction of α-syn with lipids inhibits the formation of DA-induced α-syn oligomers. Moreover, the α-syn:DA oligomer cannot interact with lipid vesicles or cause membrane permeability. Thus, the formation of α-syn:DA oligomers may alter the actions of α-syn which require membrane association, leading to disruption of its normal cellular function.  相似文献   

3.
Background:Multiple organ dysfunctions have been linked to exposure to polycyclic aromatic hydrocarbons (PAH) and oxidative stress (OS), oxidative DNA damage, and inflammatory response to PAH have been implicated. The biomarkers of OS (malondialdehyde (MDA), total plasma peroxide (TPP), total antioxidant capacity (TAC), glutathione (GSH), nitric oxide (NO), oxidative stress index (OSI)); 8-hydroxy-2-deoxyguanosine (8-OHdG)); tumor necrosis factor-alpha (TNF-α)); 1-hydroxy pyrene (1-HOP)), serum and urine creatinine, uric acid (UA), estimated glomerular filtration rate (eGFR) and peak expiratory flow rate (PEFR) were assessed in barbecue makers. Methods:One hundred barbecue makers and 50 controls were enrolled into the study. Serum and urine creatinine, UA, TAC, MDA, GSH, NO and TPP were estimated by colorimetry, 8-OHdG and TNF-α by ELISA, PEFR using peak flow meter, 1-HOP by HPLC, eGFR and OSI by calculation. Results:Barbecue makers had lower TAC, PEFR, and higher TNF-α and OS compared to controls (p<0.05). Higher TNF-α, lipid peroxidation, and lower antioxidants were observed in barbecue makers who had worked for >5years compared to <5years (p <0.05). Increasing number of working hours was associated with higher NO, lipid peroxidation, OS and lower antioxidants in barbecue makers (p <0.05). Positive associations were observed between 1-HOP and TPP (r=0.570, p=0.000), OSI (r=0.299, p=0.035) and negative association between TAC and TNF-α (r=-0.209, p=0.037), MDA (r=-0.265, p=0.008) in barbecue makers. Conclusion:Increased lipid peroxidation, OS, inflammation and depressed antioxidants and lung function observed in barbecue makers suggest increased risk of chronic lung conditions which may be associated with exposure to PAH in barbecue fumes.Key Words: Inflammation, Kidney, Lipid Peroxidation, Lung, Oxidative Stress, Polycyclic Aromatic Hydrocarbon  相似文献   

4.
The protein α-synuclein (α-Syn) has a central role in the pathogenesis of Parkinson’s disease (PD) and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN), while control rats received an AAV vector expressing green fluorescent protein (GFP). Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1), or central region (AB2) of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II) immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2) significantly inhibited α-Syn-induced dopaminergic cell (DA) and NeuN+ cell loss (one-way ANOVA (F (3, 30) = 5.8, p = 0.002 and (F (3, 29) = 7.92, p = 0.002 respectively), as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003). Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37) = 9.786; p = 0.0001) and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.  相似文献   

5.

Aim

To investigate the cellular and immunophenotypic basis of mammographic density in women at high risk of breast cancer.

Methods

Mammograms and targeted breast biopsies were accrued from 24 women at high risk of breast cancer. Mammographic density was classified into Wolfe categories and ranked by increasing density. The histological composition and immunophenotypic profile were quantified from digitized haematoxylin and eosin-stained and immunohistochemically-stained (ERα, ERβ, PgR, HER2, Ki-67, and CD31) slides and correlated to mammographic density.

Results

Increasing mammographic density was significantly correlated with increased fibrous stroma proportion (rs (22) = 0.5226, p = 0.0088) and significantly inversely associated with adipose tissue proportion (rs (22) = -0.5409, p = 0.0064). Contrary to previous reports, stromal expression of ERα was common (19/20 cases, 95%). There was significantly higher stromal PgR expression in mammographically-dense breasts (p=0.026).

Conclusions

The proportion of stroma and fat underlies mammographic density in women at high risk of breast cancer. Increased expression of PgR in the stroma of mammographically dense breasts and frequent and unexpected presence of stromal ERα expression raises the possibility that hormone receptor expression in breast stroma may have a role in mediating the effects of exogenous hormonal therapy on mammographic density.  相似文献   

6.
The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants.  相似文献   

7.
The generation of reactive nitrogen/oxygen species (RN/OS) represents an important mechanism in erythropoietin (EPO) expression and skeletal muscle adaptation to physical and metabolic stress. RN/OS generation can be modulated by intense exercise and nutrition supplements such as α-lipoic acid, which demonstrates both anti- and pro-oxidative action. The study was designed to show the changes in the haematological response through the combination of α-lipoic acid intake with running eccentric exercise. Sixteen healthy young males participated in the randomised and placebo-controlled study. The exercise trial involved a 90-min run followed by a 15-min eccentric phase at 65% VO2max (-10% gradient). It significantly increased serum concentrations of nitric oxide (NO), hydrogen peroxide (H2O2) and pro-oxidative products such as 8-isoprostanes (8-iso), lipid peroxides (LPO) and protein carbonyls (PC). α-Lipoic acid intake (Thiogamma: 1200 mg daily for 10 days prior to exercise) resulted in a 2-fold elevation of serum H2O2 concentration before exercise, but it prevented the generation of NO, 8-iso, LPO and PC at 20 min, 24 h, and 48 h after exercise. α-Lipoic acid also elevated serum EPO level, which highly correlated with NO/H2O2 ratio (r = 0.718, P < 0.01). Serum total creatine kinase (CK) activity, as a marker of muscle damage, reached a peak at 24 h after exercise (placebo 732 ± 207 IU · L-1, α-lipoic acid 481 ± 103 IU · L-1), and correlated with EPO (r = 0.478, P < 0.01) in the α-lipoic acid group. In conclusion, the intake of high α-lipoic acid modulates RN/OS generation, enhances EPO release and reduces muscle damage after running eccentric exercise.  相似文献   

8.
Salivary flow and composition have an impact on flavor perception. However, very few studies have explored the relationship between saliva, individual liking and usual dietary intake. The aim of our study was to evaluate the association of salivary flow and composition with both a liking for fat, saltiness and sweetness and the usual nutrient intake in an adult French population. Liking for fat, saltiness, and sweetness were inferred from liking scores obtained during hedonic tests on 32 food products among 282 French adults participating in the Nutrinet-Santé Study. Before assessing liking, resting saliva was collected. Standard biochemical analyses were performed to assess specific component concentrations and enzymatic activities. Dietary data were collected using three web-based 24h records. Relationships between salivary flow and composition, sensory liking and nutrient intake were assessed using linear regression. Total antioxidant capacity was positively associated with simple carbohydrate intake (β = 31.3, 95% CI = 1.58; 60.99) and inversely related to complex carbohydrate consumption (β = -52.4, 95% CI = -87.51; -19.71). Amylolysis was positively associated with both total (β = 0.20, 95% CI = 0.01; 0.38) and simple carbohydrate intake (β = 0.21, 95% CI = 0.01; 0.39). Salivary flow was positively associated with liking for fat (β = 0.14, 95% CI = 0.03; 0.25). Proteolysis was positively associated with liking for saltiness and for fat (β = 0.31, 95% CI = 0.02; 0.59; β = 0.28, 95% CI = 0.01; 0.56, respectively). Amylolysis was inversely associated with liking for sweetness (β = -10.13, 95% CI = -19.51; -0.75). Carbonic anhydrase 6 was inversely associated with liking for saltiness (β = -46.77, 95% CI = -86.24; -7.30). Saliva does not substantially vary according to a usual diet, except for carbohydrate intake, whereas the specific association between salivary flow/composition and sensory liking suggests the influence of saliva characteristics in food acceptance.  相似文献   

9.

Background

The pathology of Parkinson''s disease (PD) is characterized by the degeneration of the nigrostriatal dopaminergic pathway, as well as the formation of intraneuronal inclusions known as Lewy bodies and Lewy neurites in the substantia nigra. Accumulations of nitrated α-synuclein are demonstrated in the signature inclusions of Parkinson''s disease. However, whether the nitration of α-synuclein is relevant to the pathogenesis of PD is unknown.

Methodology/Principal Findings

In this study, effect of nitrated α-synuclein to dopaminergic (DA) neurons was determined by delivering nitrated recombinant TAT-α-synuclein intracellular. We provide evidence to show that the nitrated α-synuclein was toxic to cultured dopaminergic SHSY-5Y neurons and primary mesencephalic DA neurons to a much greater degree than unnitrated α-synuclein. Moreover, we show that administration of nitrated α-synuclein to the substantia nigra pars compacta of rats caused severe reductions in the number of DA neurons therein, and led to the down-regulation of D2R in the striatum in vivo. Furthermore, when administered to the substantia nigra of rats, nitrated α-synuclein caused PD-like motor dysfunctions, such as reduced locomotion and motor asymmetry, however unmodified α-synuclein had significantly less severe behavioral effects.

Conclusions/Significance

Our results provide evidence that α-synuclein, principally in its nitrated form, induce DA neuron death and may be a major factor in the etiology of PD.  相似文献   

10.
Parkinson’s disease (PD), one of the most common neurodegenerative disorders, is characterized by progressive neurodegeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). DJ-1 acts essential roles in neuronal protection and anti-neuroinflammatory response, and its loss of function is tightly associated with a familial recessive form of PD. However, the molecular mechanism of DJ-1 involved in neuroinflammation is largely unclear. Here, we found that wild-type DJ-1, rather than the pathogenic L166P mutant DJ-1, directly binds to the subunit p65 of nuclear factor-κB (NF-κB) in the cytoplasm, and loss of DJ-1 promotes p65 nuclear translocation by facilitating the dissociation between p65 and NF-κB inhibitor α (IκBα). DJ-1 knockout (DJ-1−/−) mice exhibit more microglial activation compared with wild-type littermate controls, especially in response to lipopolysaccharide (LPS) treatment. In cellular models, knockdown of DJ-1 significantly upregulates the gene expression and increases the release of LPS-treated inflammatory cytokines in primary microglia and BV2 cells. Furthermore, DJ-1 deficiency in microglia significantly enhances the neuronal toxicity in response to LPS stimulus. In addition, pharmacological blockage of NF-κB nuclear translocation by SN-50 prevents microglial activation and alleviates the damage of DA neurons induced by microglial DJ-1 deficiency in vivo and in vitro. Thus, our data illustrate a novel mechanism by which DJ-1 facilitates the interaction between IκBα and p65 by binding to p65 in microglia, and thus repressing microglial activation and exhibiting the protection of DA neurons from neuroinflammation-mediated injury in PD.Subject terms: Cell death in the nervous system, Parkinson''s disease  相似文献   

11.
12.

Background

Exposure to inorganic arsenic (As) through drinking water during pregnancy is associated with lower birth size and child growth. The aim of the study was to assess the effects of As exposure on child growth parameters to evaluate causal associations.

Methodology/Findings

Children born in a longitudinal mother-child cohort in rural Bangladesh were studied at 4.5 years (n=640) as well as at birth (n=134). Exposure to arsenic was assessed by concurrent and prenatal (maternal) urinary concentrations of arsenic metabolites (U-As). Associations with plasma concentrations of insulin-like growth factor 1 (IGF-1), calcium (Ca), vitamin D (Vit-D), bone-specific alkaline phosphatase (B-ALP), intact parathyroid hormone (iPTH), and phosphate (PO4) were evaluated by linear regression analysis, adjusted for socioeconomic factor, parity and child sex. Child U-As (per 10 µg/L) was significantly inversely associated with concurrent plasma IGF-1 (β=-0.27; 95% confidence interval: -0.50, -0.0042) at 4.5 years. The effect was more obvious in girls (β=-0.29; -0.59, 0.021) than in boys, and particularly in girls with adequate height (β=-0.491; -0.97, -0.02) or weight (β=-0.47; 0.97, 0.01). Maternal U-As was inversely associated with child IGF-1 at birth (r=-0.254, P=0.003), but not at 4.5 years. There was a tendency of positive association between U-As and plasma PO4 in stunted boys (β=0.27; 0.089, 0.46). When stratified by % monomethylarsonic acid (MMA, arsenic metabolite) (median split at 9.7%), a much stronger inverse association between U-As and IGF-1 in the girls (β=-0.41; -0.77, -0.03) was obtained above the median split.

Conclusion

The results suggest that As-related growth impairment in children is mediated, at least partly, through suppressed IGF-1 levels.  相似文献   

13.
Parkinson''s disease (PD) is associated with progressive degeneration of dopaminergic (DA) neurons. We report for the first time that the Drosophila histone deacetylase 6 (dHDAC6) plays a critical role in the protection of DA neurons and the formation of α-synuclein inclusions by using a Drosophila PD model constructed by ectopic expression of human α-synuclein. Depletion of dHDAC6 significantly enhances the effects caused by ectopic expression of α-synuclein, namely, loss of DA neurons, retinal degeneration, and locomotor dysfunction. Expression of α-synuclein in the DA neurons leads to fewer inclusions in the brains of dHDAC6 mutant flies than in wild-type flies. Conversely, overexpression of dHDAC6 is able to suppress the α-synuclein–induced DA neuron loss and retinal degeneration and promote inclusion formation. Furthermore, mutation of dHDAC6 reinforces the accumulation of oligomers that are suggested to be a toxic form of α-synuclein. We propose that α-synuclein inclusion formation in the presence of dHDAC6 protects DA neurons from being damaged by oligomers, which may uncover a common mechanism for synucleinopathies.  相似文献   

14.
Pressure volume curves for Alternanthera philoxeroides (Mart.) Griseb. (alligator weed) grown in 0 to 400 millimolar NaCl were used to determine water potential (Ψ), osmotic potential (ψs), turgor potential (ψp) and the bulk elastic modulus (ε) of shoots at different tissue water contents. Values of ψs decreased with increasing salinity and tissue Ψ was always lower than rhizosphere Ψ. The relationship between ψp and tissue water content changed because ε increased with salinity. As a result, salt-stressed plants had larger ranges of positive turgor but smaller ranges of tissue water content over which ψp was positive. To our knowledge, this is the first report of such a salinity effect on ε in higher plants. These increases in ε with salinity provided a mechanism by which a large difference between plant Ψ and rhizosphere Ψ, the driving force for water uptake, could be produced with relatively little water loss by the plant. A time-course study of response after salinization to 400 millimolar NaCl showed Ψ was constant within 1 day, ψs and ψp continued to change for 2 to 4 days, and ε continued to change for 4 to 12 days. Changes in ε modified the capacity of alligator weed to maintain a positive water balance and consideration of such changes in other species of higher plants should improve our understanding of salt stress.  相似文献   

15.

Background

Neuroinflammation plays an important role in the pathogenesis of Parkinson’s disease (PD), inducing and accelerating dopaminergic (DA) neuron loss. Autophagy, a critical mechanism for clearing misfolded or aggregated proteins such as α-synuclein (α-SYN), may affect DA neuron survival in the midbrain. However, whether autophagy contributes to neuroinflammation-induced toxicity in DA neurons remains unknown.

Results

Intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) into young (3-month-old) and aged (16-month-old) male C57BL/6J mice was observed to cause persistent neuroinflammation that was associated with a delayed and progressive loss of DA neurons and accumulation of α-SYN in the midbrain. The autophagic substrate-p62 (SQSTM1) persistently increased, whereas LC3-II and HDAC6 exhibited early increases followed by a decline. In vitro studies further demonstrated that TNF-α induced cell death in PC12 cells. Moreover, a sublethal dose of TNF-α (50 ng/ml) increased the expression of LC3-II, p62, and α-SYN, implying that TNF-α triggered autophagic impairment in cells.

Conclusion

Neuroinflammation may cause autophagic impairment, which could in turn result in DA neuron degeneration in midbrain.  相似文献   

16.
Aimsβ-amyloid (Aβ) plaques are a key feature of Alzheimer’s disease pathology but correlate poorly with dementia. They are associated with astrocytes which may modulate the effect of Aβ-deposition on the neuropil. This study characterised the astrocyte response to Aβ plaque subtypes, and investigated their association with cognitive impairment.MethodsAβ plaque subtypes were identified in the cingulate gyrus using dual labelling immunohistochemistry to Aβ and GFAP+ astrocytes, and quantitated in two cortical areas: the area of densest plaque burden and the deep cortex near the white matter border (layer VI). Three subtypes were defined for both diffuse and compact plaques (also known as classical or core-plaques): Aβ plaque with (1) no associated astrocytes, (2) focal astrogliosis or (3) circumferential astrogliosis.ResultsIn the area of densest burden, diffuse plaques with no astrogliosis (β = -0.05, p = 0.001) and with focal astrogliosis (β = -0.27, p = 0.009) significantly associated with lower MMSE scores when controlling for sex and age at death. In the deep cortex (layer VI), both diffuse and compact plaques without astrogliosis associated with lower MMSE scores (β = -0.15, p = 0.017 and β = -0.81, p = 0.03, respectively). Diffuse plaques with no astrogliosis in layer VI related to dementia status (OR = 1.05, p = 0.025). In the area of densest burden, diffuse plaques with no astrogliosis or with focal astrogliosis associated with increasing Braak stage (β = 0.01, p<0.001 and β = 0.07, p<0.001, respectively), and ApoEε4 genotype (OR = 1.02, p = 0.001 and OR = 1.10, p = 0.016, respectively). In layer VI all plaque subtypes associated with Braak stage, and compact amyloid plaques with little and no associated astrogliosis associated with ApoEε4 genotype (OR = 1.50, p = 0.014 and OR = 0.10, p = 0.003, respectively).ConclusionsReactive astrocytes in close proximity to either diffuse or compact plaques may have a neuroprotective role in the ageing brain, and possession of at least one copy of the ApoEε4 allele impacts the astroglial response to Aβ plaques.  相似文献   

17.
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA.  相似文献   

18.

Background

Type 1 diabetes (T1D) is an autoimmune disease resulting in the targeted destruction of pancreatic β-cells and permanent loss of insulin production. Proper glucose management results in better clinical outcomes for T1D and provides a strong rationale to identify non-invasive biomarkers indicative or predictive of glycemic control. Therefore, we investigated the association of salivary inflammation with HbA1c in a T1D cohort.

Methods

Unstimulated saliva was collected from 144 subjects with T1D at the USF Diabetes Center. BMI, duration of diabetes, and HbA1c were recorded during clinical visit. Levels of interleukin (IL)-1β, -6, -8, -10, IFN-γ, TNF-α, MMP-3, -8, and -9 were measured using multiplexing immunoassay analysis. To account for smoking status, salivary cotinine levels were also determined.

Results

Multiple linear (HbA1c) and logistic (self-reported gingival condition) regression analyses were performed to examine the relationships between the Principal Component Analysis (PCA) components and HbA1c and gingival condition (adjusted for age, duration of diabetes, BMI, and sex; model for HbA1c also adjusted for gingival condition and model for gingival condition also adjusted for HbA1c). PCA components 1 (MMP-8 and MMP-9) and 3 (TNF-α) were significantly associated with HbA1c (β = 0.28 ±0.14, p = 0.045; β = 0.31 ±0.14, p = 0.029), while PCA component 2 (IL-6, IL-1β, and IL-8) was significantly associated with gingival condition (OR 1.60 95% CI 1.09–2.34, p = 0.016). In general, increased salivary inflammatory burden is associated with decreased glycemic control and self-reported gingival condition.

Conclusions

The saliva may represent a useful reservoir of novel noninvasive inflammatory biomarkers predictive of the progression and control of T1D.  相似文献   

19.
Mutations, duplication and triplication of α-synuclein genes are linked to familial Parkinson’s disease (PD), and aggregation of α-synuclein (α-syn) in Lewy bodies (LB) is involved in the pathogenesis of the disease. The targeted overexpression of α-syn in the substantia nigra (SN) mediated by viral vectors may provide a better alternative to recapitulate the neurodegenerative features of PD. Therefore, we overexpressed human wild-type α-syn using rAAV2/1 vectors in the bilateral SN of mouse and examined the effects for up to 12 weeks. Delivery of rAAV-2/1-α-syn caused significant nigrostriatal degeneration including appearance of dystrophic striatal neurites, loss of nigral dopaminergic (DA) neurons and dissolving nigral neuron bodies in a time-dependent manner. In addition, the α-syn overexpressed mice also developed significant deficits in motor function at 12 weeks when the loss of DA neurons exceeded a threshold of 50%. To investigate the sensitivity to neurotoxins in mice overexpressing α-syn, we performed an MPTP treatment with the subacute regimen 8 weeks after rAAV injection. The impact of the combined genetic and environmental insults on DA neuronal loss, striatal dopamine depletion, dopamine turnover and motor dysfunction was markedly greater than that of either alone. Moreover, we observed increased phosphorylation (S129), accumulation and nuclear distribution of α-syn after the combined insults. In summary, these results reveal that the overexpressed α-syn induces progressive nigrostriatal degeneration and increases the susceptibility of DA neurons to MPTP. Therefore, the targeted overexpression of α-syn and the combination with environmental toxins may provide valuable models for understanding PD pathogenesis and developing related therapies.  相似文献   

20.
We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ) and p50–101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN−/− cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN−/− MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110β function in the absence of PTEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号