首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of tetrazole bearing compounds were synthesized and evaluated for their in vitro cyclooxygenase (COX) isozymes (COX-1/COX-2) inhibitory activity, in vitro anti-inflammatory activity through measuring levels of expression of IL-6 and TNF-α and antimicrobial activity. Cyclization of pyridine derivative 5b was confirmed using 2D NMR such as NOESY and HMBC experiments. Within the synthesized compounds, compound 7c was identified as effective and selective COX-2 inhibitors (COX-2 IC50 = 0.23 uM; COX-2 selectivity index = 16.91). Moreover 7c was the most effective derivative on TNF-α (37.6 pg/ml). While, the most active compound on IL-6 was isoxazole derivative 6 (42.8 pg/ml). Dual inhibitory activity on both IL-6 and TNF-α was exhibited by compounds 2 and 3 (IL-6 = 47.5 and 82.7 pg/ml, respectively) and (TNF-α = 31.7 and 33.8 pg/ml, sequentially).Additionally, compound 7a, showed broad spectrum antimicrobial activity against Gram positive cocci, Gram positive rods and yeast fungus (inhibition zone = 20 and 19 mm). None of the test compounds exhibited activity against Gram negative rods. Compounds 3 and 7c exhibited good antifungal activity at MIC equal to 64.5 µg/ml. While compound 6 showed antibacterial activities against Micrococcus lysodicticus and Bacillus subtilis at MIC = 32.25 and 64.5 µg/ml, respectively.Computational analysis was used to predict molecular properties and bioactivity of the target compounds. To confirm the mode of action of the synthesized compounds as anti-inflammatory agents, molecular docking was done. Appreciable binding interactions were observed for compound 7c containing COX-2 pharmacophore (SO2NH2), with binding energy −10.6652 Kcal/mol, forming two hydrogen bonding interactions with His90 and Tyr355 amino acids. It was fully fitted within COX-2 active site having the highest COX-2 selectivity index between all the test compounds (S.I. = 16.91).  相似文献   

2.
A series of 1,2,3-triazole-derived naphthalimides as a novel type of potential antimicrobial agents were synthesized and characterized by IR, NMR and HRMS spectra. All the new compounds were screened for their antimicrobial activity against four Gram-positive bacteria, four Gram-negative bacteria and three fungi. Bioactive assay manifested that 3,4-dichlorobenzyl compound 9e and its corresponding hydrochloride 11e showed better anti-Escherichia coli activity than Norfloxacin and Chloromycin. Preliminary research revealed that compound 9e could effectively intercalate into calf thymus DNA to form compound 9e–DNA complex which might block DNA replication and thus exert antimicrobial activities. Human serum albumin could effectively store and carry compound 9e by electrostatic interaction.  相似文献   

3.
Dipeptidyl peptidase-IV (DPP-4) is a validated target for T2DM treatment. We previously reported a novel series of triazole-based uracil derivatives bearing aliphatic carboxylic acids with potent DPP-4 inhibitory activities in vitro, but these compounds showed poor hypoglycemic effects in vivo. Herein we further optimized the triazole moiety by amidation of the carboxylic acid to improve in vivo activities. Two series of compounds 3a-f and 4a-g were designed and synthesized. By screening in DPP-4, compound 4c was identified as a potent DPP-4 inhibitor with the IC50 value of 28.62 nM. Docking study revealed compound 4c has a favorable binding mode and interpreted the SAR of these analogs. DPP-8 and DPP-9 tests indicated compound 4c had excellent selectivity over DPP-8 and DPP-9. Further in vivo evaluations revealed that compound 4c showed more potent hypoglycemic activity than its corresponding carboxylic acid in ICR mice and dose-dependently reduced glucose levels in type 2 diabetic C57BL/6 mice. The overall results have shown that compound 4c could be a promising lead for further development of novel DPP-4 agents treating T2DM.  相似文献   

4.
New pyrazolo[3,4-b]pyridine analogs 29 were synthesized and subjected to antimicrobial testing toward chosen Gram-negative bacteria, Gram-positive bacteria and fungi. Compound 2 exhibited potent and extended-spectrum antimicrobial activity. Further, 6 and 9c demonstrated remarkable and extended-spectrum antibacterial activity. Antiquorum-sensing activity of the new members was tested over C. violaceum, whereas 9c demonstrated strong efficacy, while 2, 8b and 9b displayed moderate efficacy. In vitro anticancer assay toward HepG2, MCF-7 and Hela cancer cells manifested that 2 and 9c are powerful and extended-spectrum anticancer agents. Additionally, 8a, 8b and 9b showed excellent activity toward the three cancer cells. In vivo anticancer assay over EAC in mice indicated that 2 and 9c have the greatest activity. Moreover, cytotoxicity assay over WISH and W138 normal cells clarified that the checked analogs possess weak cytotoxicity toward the two normal cells. DNA-binding affinity was also tested, whereas 2, 3, 8b, 9b and 9c demonstrated great affinity. Molecular modeling studies revealed that the investigated compounds bind to DNA through intercalation similarly to doxorubicin. In silico studies revealed that the new members are anticipated to show excellent intestinal absorption.  相似文献   

5.
A series of novel oxazaphosphorine prodrugs of 9-(2-phosphonomethoxyethyl)adenine (PMEA, adefovir) were synthesized and their anti-hepatitis B virus (HBV) activity was evaluated in HepG2 2.2.15 cells, with adefovir dipivoxil as a reference drug. In the cell assays, compounds 7b and 7d exhibited anti-HBV activity comparable to that of adefovir dipivoxil, while compound 7c, with an IC50 value of 0.12 μM, was found to be three times more potent than the reference compound. In vitro stability studies showed that (SP,S)-7c, the diastereomer of compound 7c, was stable in human blood plasma but underwent rapid metabolism to release the parent drug PMEA in liver microsomes. The possible metabolic pathway of (SP,S)-7c in human liver microsomes was described. These findings suggest that compound (SP,S)-7c is a promising anti-HBV drug candidate for further development.  相似文献   

6.
Neutrophils play a pivotal role in the pathophysiology of multiple human inflammatory diseases. Novel pharmacological strategies which drive neutrophils to undergo programmed cell death (apoptosis) have been shown to facilitate the resolution of inflammation. Both the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine and nitric oxide (NO) have been shown to enhance apoptosis of neutrophils and possess pro-resolution of inflammation properties. In order to search for new multi-target pro-resolution derivatives, here we describe the design, synthesis and investigation of the biological potential of a small series of hybrid compounds obtained by conjugating R-roscovitine with two different NO-donor moieties (compounds 2, 9a, 9c). The synthesized compounds were tested as potential pro-resolution agents, with their ability to promote human neutrophil apoptosis evaluated. Both compound 9a and 9c showed an increased pro-apoptotic activity when compared with either R-roscovitine or structurally related compounds devoid of the ability to release NO (des-NO analogues). Inhibition of either NO-synthase or soluble guanylate cyclase did not affect the induction of apoptosis by the R-roscovitine derivatives, similar to that reported for other classes of NO-donors. In contrast the NO scavenger PTIO prevented the enhanced apoptosis seen with compound 9a over R-roscovitine. These data show that novel compounds such as CDKi–NO-donor hybrids may have additive pro-resolution of inflammation effects.  相似文献   

7.
In the current study, derivatives of 25-hydroxyprotopanaxadiol (25-OH-PPD) were prepared and their in vitro anti-tumor activities were tested on six different human tumor cell lines by standard MTT assay. The results showed that combining an ester group combined with the presence of an amino acid moiety led to a 10-fold improved anti-tumor activity. Compound 1c exhibited the best anti-tumor activity in the in vitro assays. Compounds 2c, 3c, 4c, 5c, 6c and 8b showed better anti-tumor activities compared to the parent compound 25-OH-PPD. The current results may provide useful data for researching and developing new anti-cancer agents.  相似文献   

8.
New thienopyrimidinone and triazolothienopyrimidinone derivatives have been synthesized. These compounds were subjected to anti-inflammatory and antimicrobial activity screening aiming to identify new candidates that have dual anti-inflammatory and antimicrobial activities.Compounds 5, 7 and 10a showed minimal ulcerogenic effect and high selectivity towards human recombinant COX-2 over COX-1 enzyme. Their docking outcome correlated with their biological activity and assured the high selectivity binding towards COX-2. In addition, they could act safely up to 80 mg/kg orally or 40 mg/kg parentrally. The antimicrobial screening showed that compound 10a displayed distinctive inhibitory effect on the growth of Escherichia coli comparable to that of ampicillin. Moreover, compounds 5, 7, 9 and 12a possessed 50% of the inhibitory activity of ampicillin against E. coli. Thus, compounds 5, 7 and 10a represent promising dual acting anti-inflammatory and antimicrobial agents. This work provides rewarding template enriching the chemical space for dual anti-inflammatory anti-microbial activities.  相似文献   

9.
New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 μM in comparison to the reference drug doxorubicin (IC50 = 6.73 μM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034–0.582 μM) compared to the reference drug, sorafenib (IC50 = 0.019 μM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.  相似文献   

10.
Ten new derivatives of benzenesulphonamide bearing carboxamide functionality were synthesized and investigated for their in vitro antimicrobial, antioxidant and in vivo anti-inflammatory activities. Compound 9d inhibited carrageenan induced rat-paw oedema at 93.81, 88.79 and 86.09% at 1 h, 2 h and 3 h administration respectively. In the antimicrobial activity, compound 9a (6.54, 6.69 and 6.64 mg/mL) was most potent against S. aureus, B. subtilis and C. albicans respectively, compound 9e (6.45 and 6.46 mg/mL) was most active against P. aeruginosa and A. niger respectively while compound 9i (6.24 mg/mL) was most active against E. coli. Only compound 9a (IC50 0.3052 mg/mL) had comparable activity with Vitamin C (IC50 0.2090 mg/mL) in the antioxidant assay.  相似文献   

11.
The field of antifungal agent has become static and development of resistance by the pathogen as well as limited clinical efficacy of marketed drugs demand the constant development of new antifungals. The presence of hydrocarbon chain of specific length linked with various different heterocycles was found to be an important structural feature in various antifungal lead compounds. Based on the prominent antimicrobial activity of β-carboline derivatives, a set of C1 alkylated tetrahydro-β-carboline derivatives were proposed to be active against fungi. To validate and confirm the role of suitable alkyl chains linked to a β-carboline scaffold, few related analogues having C1 aryl substituents were also synthesized in one step via classic Pictet-Spengler reaction. The synthesized library was evaluated for its antifungal activity against C. albicans, C. krusei, C. parapsilosis, C. kefyr, C. glabrata, C. tropicalis and C. neoformans. One of the library members (compound 12c), with n-alkyl chain of eight carbons exhibited potent antifungal activity against C. glabrata and C. kefyr. The lead compound, being selectively toxic also demonstrated prominent synergy enhancing the potency of antifungal drugs up to 10-fold. The time kill kinetic studies confirmed the efficacy of compound 12c, where the results obtained were comparable to that of Amp B. FE-SEM analysis revealed the increased asymmetry, disintegration and roughness of cell surface which could be because of the possible interaction of compound 12c at membrane level or interference in cell wall structure. Apoptosis/necrosis detection assay confirmed the significant apoptotic activity in C. glabrata cells after 12c treatment which was responsible for the rapid killing of C. glabrata cells.  相似文献   

12.
A new series of ligustrazine-cinnamon acid derivatives had been designed and synthesized as potential neuro-protective agents. Among the derivatives, 3a exhibited the promising neuroprotective activity (EC50 = 3.68 μM). Moreover, with the deep research of the drug pathway, it (the further mechanism researches) suggested compound 3a could inhibit the apoptosis of injured PC12 cells via blocking the mitochondria apoptosis pathway including up-regulation the ratio of Bcl-2/Bax, down-regulation the expression of cytochrome-c (Cyt-c) and inhibition of the activity of caspase-9 and -3. In addition, the structure-activity relationships (SARs) of novel compounds were also discussed.  相似文献   

13.
A new series of functionalized (Z)-3-(2-oxo-2-substituted ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-ones 2326, incorporating pharmaceutically privileged substructures such as cyclopropyl, naphthyl, biphenyl and cyclohexylphenyl were synthesized in excellent yields. All the synthesized compounds were screened for their in vitro antibacterial activity against gram-(+)ve and gram-(?)ve bacterial species i.e. S. griseus, S. aureus, B. subtillis and E. coli as well as in vitro antifungal activity against fungal species i.e. F. oxysporium, A. niger, P. funiculosum and T. reesei, respectively. In this study, compounds containing cyclopropyl and cyclohexylphenyl substructures were identified as promising antimicrobial agents than standard drugs, ampicillin and chloramphenicol as well as ketoconazole. SAR study illustrates that electron-withdrawing groups increases the antibacterial as well as antifungal activity of 2-oxo-benzo[1,4]oxazines and vice versa. Compounds 23e and 26e, the most active compounds of the series, displayed promising antibacterial activity than Ampicillin and Chloramphenicol. Moreover, compound 26d showed promising antifungal potency as compared to Ketoconazole. Cytotoxic studies of the active compounds i.e. 23ce, 24e, 25d and 26de found to be non-toxic in nature in 3T3 fibroblast cell lines using MTT assay.  相似文献   

14.
A series of aryl fluorosulfate analogues (137) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure–activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of –OSO2F group and slender effect of different substituent’s on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.  相似文献   

15.
Twenty novel 1,2,3-triazole noscapine derivatives were synthesized starting from noscapine by consecutive N-demethylation, reduction of lactone ring, N-propargylation and Huisgen 1,3-dipolar cycloaddition reaction. In order to select the most promising molecules to subject to further biophysical and biological evaluation, a molecular docking analysis round was performed using noscapine as reference compound. The molecules featuring docking predicted binding affinity better than that of noscapine were then subjected to MTT assay against MCF7 cell line. The obtained results disclosed that all the selected triazole derivatives exhibited a remarkably lower cell viability compared to noscapine in the range of 20 μM in 48 h. In an attempt to correlate the biological activity with the ability to bind tubulin, the surface plasmon resonance (SPR) assay was employed. Compounds 8a, 8h, 9c, 9f and 9j were able to bind tubulin with affinity constant values in the nanomolar range and higher if compared to noscapine. Integrating computational predictions and experimental evaluation, two promising compounds (8h and 9c) were identified, whose relevant cytotoxicity was supposed to be correlated with tubulin binding affinity. These findings shed lights onto structural modifications of noscapine toward the identification of more potent cytotoxic agents targeting tubulin.  相似文献   

16.
Designed and synthesized novel homopiperazine linked imidazo[1,2-a]pyrimidine derivatives (10a–i, 11a–g, 12), and evaluated them for their in vitro cytotoxicity against HeLa cells (cervical cancer), A549 cells (lung cancer) cells, by MTT assay. Compound 12 (IC50 = 4.14 µM) and compound 10c (IC50 = 5.98 µM) were found to be 2.5 fold, and 1.74 fold more potent when compared with standard Etoposide (IC50 = 10.44 µM), against A549 (lung cancer cells). Compound 12 also found to be 1.57 and 1.13 fold potent against DU145 (IC50 = 6.24 µM) and HeLa (IC50 = 6.54 µM), respectively when compared with Etoposide (DU145, IC50 = 9.8 µM; HeLa, IC50 = 7.43 µM). Compound 10f (IC50 = 6.12 µM) was found to be 1.31 fold more potent than Etoposide (IC50 = 7.43 µM) against HeLa cell lines.Moreover compounds 10a and 11a showed cytotoxicity at low micro-molar concentrations against A549 cells. Synthesized compounds were also evaluated for their antimicrobial activity by Cup plate diffusion method. Compounds 10c, 11b, 11d and 11f displayed remarkable antimicrobial activity relating to their standard drugs Gentamycin, Amphotericin B and Ampicillin. Significantly, compound 10c showed broad spectrum activity against tested microbial strains. All the designed compounds were well occupied the binding site of the colchicine and interacted with both α- and β-tubuline interface (PDB ID: 3E22), which demonstrates that synthesized compounds are promising tubulin inhibitors. Also, the synthesized compounds occupied the catalytic triad and adenine-binding site, in the active site of β-ketoacyl-acyl carrier protein synthase III enzyme (PDB ID: 1MZS). The molecular docking results provided the useful information for the future design of more potent inhibitors. These preliminary results convinced further investigation and modifications on synthesized compounds aiming towards the development of potential cytotoxic as well as antimicrobial agents.  相似文献   

17.
A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1H NMR, 13C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads.  相似文献   

18.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

19.
Four pyrazolopyrimidine series were prepared with a substitution at position- 4 by Schiff base, triazole, oxadiazole and pyrazole moieties (7a-f, 8a,b, 9a-f, 10a,b and 13a,b), respectively. All the synthesized compounds were evaluated in vitro against COX-2 and in vivo against carrageenan-induced rat paw edema as anti-inflammatory agents. Regarding the anti-inflammatory activity (AI) compounds 7c, 7f, 8a, and 9a showed higher activity with respect to celecoxib. Compounds 9a, 7d, and 7f were closely selective to celecoxib. Also, 7c and 7d were safer than indomethacin and similar to celecoxib as resulted from the histopathological study. In addition, the docking study that showed the binding mode of prominent pyrazolopyrimidine compounds inside the COX-2 receptor. Formation of unexpected pyrazole 13a and 13b was briefly discussed using 2D NMR.  相似文献   

20.
New functionalized acrylamide derivatives bearing sulfisoxazole moiety were designed to target bacterial dihydropteroate synthase (DHPS). The in vitro antimicrobial activities of these compounds were assessed. The E-configuration of compound 5b was proved by single crystal X-ray analysis. Compounds 5g and 5h displayed double the activity of ampicillin against B. subtilis. Also, 5h was two times more active than gentamycin against E. coli. Interestingly, compounds 5f-g, 7c, 8a, 8c exhibited two folds the potency of amphotericin B against S. racemosum while 5h displayed three folds the activity of amphotericin B against S. racemosum. Most of the synthesized compounds showed superior activities to the parent sulfisoxazole and were non-toxic to normal cells. DHPS is confirmed to be a putative target for our compounds via antagonizing their antibacterial activity by the folate precursor (p-aminobenzoic acid) and product (methionine) on E. coli ATCC 25922. Docking experiments against DHPS rationalized the observed antibacterial activity. Additionally, compound 5g was evaluated as a selective targeting vector for 99mTc that showed a remarkable uptake and targeting ability towards the infection site that was induced in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号