首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lorbek G  Lewinska M  Rozman D 《The FEBS journal》2012,279(9):1516-1533
The present review describes the transgenic mouse models that have been designed to evaluate the functions of the cytochrome P450s involved in cholesterol and bile acid synthesis, as well as their link with disease. The knockout of cholesterogenic Cyp51 is embrionally lethal, with symptoms of Antley-Bixler syndrome occurring in mice, whereas the evidence for this association is conflicting in humans. Disruption of Cyp7a1 from classic bile acid synthesis in mice leads to either increased postnatal death or a milder phenotype with elevated serum cholesterol. The latter is similar to the case in humans, where CYP7A1 mutations associate with high plasma low-density lipoprotein and hepatic cholesterol content, as well as deficient bile acid excretion. Disruption of Cyp8b1 from an alternative bile acid pathway results in the absence of cholic acid and a reduced absorption of dietary lipids; however, the human CYP8B1 polymorphism fails to explain differences in bile acid composition. Unexpectedly, apparently normal Cyp27a1(-/-) mice still synthesize bile acids that originate from the compensatory pathway. In humans, CYP27A1 mutations cause cerebrotendinous xanthomatosis, suggesting that only mice can compensate for the loss of alternative bile acid synthesis. In line with this, Cyp7b1 knockouts are also apparently normal, whereas human CYP7B1 mutations lead to a congenital bile acid synthesis defect in children or spastic paraplegia in adults. Mouse knockouts of the brain-specific Cyp46a1 have reduced brain cholesterol excretion, whereas, in humans, CYP46A1 polymorphisms associate with cognitive impairment. At present, cytochrome P450 family 39 is poorly characterized. Despite important physiological differences between humans and mice, mouse models prove to be an invaluable tool for understanding the multifactorial facets of cholesterol and bile acid-related disorders.  相似文献   

2.
Glucocorticoids are regulators of stress response essential for survival. Liver disease can alter this homeostatic mechanism in patients with liver cirrhosis – a finding that might mirror the controversially discussed condition of critical illness related corticosteroid insufficiency.Underlying mechanisms might be shared molecular pathways in both bile acid as well as glucocorticoid metabolism at the level of synthesis, catabolism or the hypothalamus and the pituitary gland. Molecular links include the farnesoid X receptor FXR or the G protein-coupled bile acid receptor TGR5 expressed in the liver and the adrenals.In this review we sum up knowledge on the regulation of adrenal gland function and steroidogenesis, focussing on bile acids and potential alterations under cholestatic conditions, depict molecular links between glucocorticoid and bile acid metabolism and discuss the difficulties of assessment of adrenal function in humans in general and more specifically in liver diseases.  相似文献   

3.
The critical steps in bile acid metabolism have remarkable differences between humans and mice. It is known that human cholesterol 7 alpha-hydroxylase, the enzyme catalyzing the rate-limiting step of bile acid synthesis, is more sensitive to bile acid suppression. In addition, hepatic bile acid export in humans is more dependent on the bile salt export pump (BSEP). To explore the molecular basis for these species differences, we analyzed the function of the ligand-binding domain (LBD) of human and murine farnesoid X receptor (FXR), a nuclear receptor for bile acids. We observed a strong interspecies difference in bile acid-mediated FXR function; in the coactivator association assay, chenodeoxycholate (CDCA) activated human FXR-LBD with 10-fold higher affinity and 3-fold higher maximum response than murine FXR-LBD. Consistently, in HepG2 cells human FXR-LBD increased reporter expression more robustly in the presence of CDCA. The basis for these differences was investigated by preparing chimeric receptors and by site-directed mutagenesis. Remarkably, the double replacements of Lys(366) and Val(384) in murine FXR (corresponding to Asn(354) and Ile(372) in human FXR) with Asn(366) and Ile(384) explained the difference in both potency and maximum activation; compared with the wild-type murine FXR-LBD, the double mutant gained 8-fold affinity and more than 250% maximum response to CDCA in vitro. This mutant also increased reporter expression to an extent comparable with that of human FXR-LBD in HepG2 cells. These results demonstrate that Asn(354) and Ile(372) are critically important for FXR function and that murine FXR can be "humanized" by substituting with the two corresponding residues of human FXR. Consistent with the difference in FXR-LBD transactivation, CDCA induced endogenous expression of human BSEP by 10-12-fold and murine BSEP by 2-3-fold in primary hepatocytes. This study not only provides the identification of critical residues for FXR function but may also explain the species difference in bile acids/cholesterol metabolism.  相似文献   

4.
The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage.  相似文献   

5.
Copper is an essential nutrient required for normal growth and development in many organisms. In humans, the disruption of normal copper absorption and excretion is associated with two severe disorders, known as Menkes disease and Wilson disease, respectively. The consequences of insufficient copper supply that is characteristic of Menkes disease have been largely linked to the inactivation of key metabolic enzymes, although other non-enzymatic processes may also be involved. In contrast, the consequences of copper accumulation in Wilson disease have been generally ascribed to copper-induced radical-mediated damage. Recent studies suggest that the cellular response to copper overload, particularly at the early stages of copper accumulation, involves more specific mechanisms and specific pathways. Genetic and metabolic characterization of animal models of Wilson disease has provided new insights into the pre-symptomatic effects of copper that is accumulated in the liver. The studies have uncovered unexpected links between copper metabolism, cell-cycle machinery, and cholesterol biosynthesis. We discuss these new findings along with the earlier reports on dietary effects of copper. Together these experiments suggest a tight link between lipid and copper metabolism and identify several candidate proteins that may mediate the cross-talk between copper status and lipid metabolism.  相似文献   

6.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls lipid and glucose metabolism and exerts antiinflammatory activities. PPARalpha is also reported to influence bile acid formation and bile composition. Farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that mediates the effects of bile acids on gene expression and plays a major role in bile acid and possibly also in lipid metabolism. Thus, both PPARalpha and FXR appear to act on common metabolic pathways. To determine the existence of a molecular cross-talk between these two nuclear receptors, the regulation of PPARalpha expression by bile acids was investigated. Incubation of human hepatoma HepG2 cells with the natural FXR ligand chenodeoxycholic acid (CDCA) as well as with the nonsteroidal FXR agonist GW4064 resulted in a significant induction of PPARalpha mRNA levels. In addition, hPPARalpha gene expression was up-regulated by taurocholic acid in human primary hepatocytes. Cotransfection of FXR/retinoid X receptor in the presence of CDCA led to up to a 3-fold induction of human PPARalpha promoter activity in HepG2 cells. Mutation analysis identified a FXR response element in the human PPARalpha promoter (alpha-FXR response element (alphaFXRE)] that mediates bile acid regulation of this promoter. FXR bound the alphaFXRE site as demonstrated by gel shift analysis, and CDCA specifically increased the activity of a heterologous promoter driven by four copies of the alphaFXRE. In contrast, neither the murine PPARalpha promoter, in which the alphaFXRE is not conserved, nor a mouse alphaFXRE-driven heterologous reporter, were responsive to CDCA treatment. Moreover, PPARalpha expression was not regulated in taurocholic acid-fed mice. Finally, induction of hPPARalpha mRNA levels by CDCA resulted in an enhanced induction of the expression of the PPARalpha target gene carnitine palmitoyltransferase I by PPARalpha ligands. In concert, these results demonstrate that bile acids stimulate PPARalpha expression in a species-specific manner via a FXRE located within the human PPARalpha promoter. These results provide molecular evidence for a cross-talk between the FXR and PPARalpha pathways in humans.  相似文献   

7.
In the last 25 years, a number of animal models, mainly rodents, have been generated with the goal to mimic cholestatic liver injuries and, thus, to provide in vivo tools to investigate the mechanisms of biliary repair and, eventually, to test the efficacy of innovative treatments. Despite fundamental limitations applying to these models, such as the distinct immune system and the different metabolism regulating liver homeostasis in rodents when compared to humans, multiple approaches, such as surgery (bile duct ligation), chemical-induced (3,5-diethoxycarbonyl-1,4-dihydrocollidine, DDC, α-naphthylisothiocyanate, ANIT), viral infections (Rhesus rotavirustype A, RRV-A), and genetic manipulation (Mdr2, Cftr, Pkd1, Pkd2, Prkcsh, Sec63, Pkhd1) have been developed. Overall, they have led to a range of liver phenotypes recapitulating the main features of biliary injury and altered bile acid metabolisms, such as ductular reaction, peribiliary inflammation and fibrosis, obstructive cholestasis and biliary dysgenesis. Although with a limited translability to the human setting, these mouse models have provided us with the ability to probe over time the fundamental mechanisms promoting cholestatic disease progression. Moreover, recent studies from genetically engineered mice have unveiled ‘core’ pathways that make the cholangiocyte a pivotal player in liver repair. In this review, we will highlight the main phenotypic features, the more interesting peculiarities and the different drawbacks of these mouse models. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

8.
Cell transplantation is a potential therapy for acquired or inherited liver diseases. Donor-derived hepatocytes (DDH) have been found in humans and mice after bone marrow transplantation (BMT) but with highly variable frequencies in different disease models. To test the effect of liver repopulation after BMT in inherited cholestatic liver diseases, spgp (sister of P-glycoprotein, or bile salt export pump, abcb11) knockout mice, a model for human progressive intrahepatic cholestasis type 2 with defects in excreting bile salts across the hepatocyte canalicular membrane, were transplanted with bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic donor mice after lethal irradiation. One to 6 months later, scattered EGFP-positive DDHs with positive spgp staining were observed in the liver. These hepatocytes had been incorporated into hepatic plates and stained positively with hepatocyte-specific marker albumin. RT-PCR for the spgp gene revealed positive expression in the liver of sgsp knockout mice that had received the transplant. Bile acid analysis of bile samples showed that these mice also had higher levels of total biliary bile acid and taurocholic acid concentration than knockout mice without transplantation, indicating that BMT partially improved biliary bile acid secretion. Our results indicate that bone marrow cells could serve as a potential source for restoration of hepatic functions in chronic metabolic liver disease.  相似文献   

9.
Pneumonia is a medical and public health priority, and advances against this disease will require improved knowledge of biological mechanisms. Human pneumonia is modeled with experimental infections of animals, most frequently mice. Mouse models are leading to important discoveries relevant to pneumonia, but their limitations must be carefully considered. Several approaches to establishing pneumonia in mice have been developed, and each has specific strengths and weaknesses. Similarly, procedures for characterizing microbial and host responses to infection have unique advantages and disadvantages. Mice are not small humans, and the applicability of results from murine models to human disease depends on understanding the similarities and differences between species. Additional considerations such as mouse strain, microbe strain, and prior mouse-microbe interactions also influence the design and interpretation of experiments. Results from studies of pneumonia in animals, combined with complementary basic and translational studies, are elucidating mechanisms responsible for susceptibility to and pathophysiology of lung infection.  相似文献   

10.
11.
Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.  相似文献   

12.
Humans and mice differ substantially in their bile acid profiles as mice in addition to cholic acid (CA) predominantly synthesize 6β-hydroxylated muricholic acids (MCAs) whereas humans produces chenodeoxycholic acid (CDCA) and CA as primary bile acids. Identifying the gene performing 6β-hydroxylation would be useful for ‘humanizing’ the bile acid profile in mice for studies of the interaction between bile acids, gut microbiota, and host metabolism. We investigated the formation of MCAs in primary murine hepatocytes and found that αMCA is synthesized from CDCA and βMCA from UDCA. It is commonly assumed that the P450-enzyme CYP3A11 catalyzes 6β-hydroxylation of bile acids, thus we hypothesized that mice without the Cyp3a11 gene would lack MCAs. To test this hypothesis, we analyzed bile acid profiles in Cyp3a deficient mice, which lack 7 genes in the Cyp3a gene cluster including Cyp3a11, and compared them with wild-type littermate controls. Bile acid composition in liver, gallbladder, caecum and serum from Cyp3a knock out mice and wild-type littermate controls was analyzed with UPLC-MS/MS and revealed no major differences in bile acid composition. We conclude that Cyp3a11 is not necessary for 6β-hydroxylation and the formation of MCAs.  相似文献   

13.
14.
15.
Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors. Ecto-5′-nucleotidase (E5′N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.  相似文献   

16.
The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6?month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2?months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.  相似文献   

17.
人体肠道内寄生着大量的肠道菌群,它们参与机体多种生命活动,其紊乱被认为与多种疾病密切相关。肝与肠道之间存在着特殊的解剖位置关系,二者相互作用,相互影响。肠道菌群通过肠-肝轴参与一系列生理病理反应,最终影响慢性肝疾病的发展。目前,有众多学者对肠道菌群在肝疾病中的作用进行了研究,但涉及其中具体的机制尚未探明。本文就肠道菌群通过参与Toll样受体(TLRs)活化加重肝纤维化;胆汁酸代谢调控非酒精性脂肪性肝病(NAFLD);T细胞分化改善酒精性肝病(ALD);活性氧簇(ROS)生成影响肝癌(HCC)发展中的具体分子机制做一综述。  相似文献   

18.
The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual’s gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care.  相似文献   

19.
Redundant pathways for negative feedback regulation of bile acid production   总被引:5,自引:0,他引:5  
The orphan nuclear hormone receptor SHP has been proposed to have a key role in the negative feedback regulation of bile acid production. Consistent with this, mice lacking the SHP gene exhibit mild defects in bile acid homeostasis and fail to repress cholesterol 7-alpha-hydroxylase expression in response to a specific agonist for the bile acid receptor FXR. However, this repression is retained in SHP null mice fed bile acids, demonstrating the existence of compensatory repression pathways of bile acid signaling. We provide evidence for two such pathways, based on activation of the xenobiotic receptor PXR or the c-Jun N-terminal kinase JNK. We conclude that redundant mechanisms regulate this critical aspect of cholesterol homeostasis.  相似文献   

20.
The role of fibroblast growth factor receptor 4 (FGFR4) in regulating bile acid synthesis has been well defined; however, its reported role on glucose and energy metabolism remains unresolved. Here, we show that FGFR4 deficiency in mice leads to improvement in glucose metabolism, insulin sensitivity, and reduction in body weight under high fat conditions. Mechanism of action studies in FGFR4-deficient mice suggest that the effects are mediated in part by increased plasma levels of adiponectin and the endocrine FGF factors FGF21 and FGF15, the latter of which increase in response to an elevated bile acid pool. Direct actions of increased bile acids on bile acid receptors, and other potential indirect mechanisms, may also contribute to the observed metabolic changes. The results described herein suggest that FGFR4 antagonists alone, or in combination with other agents, could serve as a novel treatment for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号