首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.  相似文献   

2.
《Current biology : CB》2021,31(24):5450-5461.e4
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
6.
The amygdala is considered a core structure of the so-called limbic system and has been implicated in a variety of functions, including emotional interpretation of sensory information, emotional arousal, emotional memory, fear and anxiety, and related clinical disorders. Despite the clinical and functional importance of the amygdala, it is only recently that some general principles of intra-amygdaloid mechanisms of signal processing that are relevant for fear behavior and memory have emerged from behavioral, anatomical, electrophysiological, and neurochemical studies performed in the amygdala of various mammalian species in vivo, in situ and in vitro.  相似文献   

7.
《Cell reports》2020,30(12):4197-4208.e6
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
10.
Optogenetics uses light-inducible protein-protein interactions to precisely control the timing, localization, and intensity of signaling activity. The precise spatial and temporal resolution of this emerging technology has proven extremely attractive to the study of embryonic development, a program faithfully replicated to form the same organism from a single cell. We have previously performed a comparative study for optogenetic activation of receptor tyrosine kinases, where we found that the cytoplasm-to-membrane translocation-based optogenetic systems outperform the membrane-anchored dimerization systems in activating the receptor tyrosine kinase signaling in live Xenopus embryos. Here, we determine if this engineering strategy can be generalized to other signaling pathways involving membrane-bound receptors. As a proof of concept, we demonstrate that the cytoplasm-to-membrane translocation of the low-density lipoprotein receptor-related protein-6 (LRP6), a membrane-bound coreceptor for the canonical Wnt pathway, triggers Wnt activity. Optogenetic activation of LRP6 leads to axis duplication in developing Xenopus embryos, indicating that the cytoplasm-to-membrane translocation of the membrane-bound receptor could be a generalizable strategy for the construction of optogenetic systems.  相似文献   

11.
12.
13.
《Neuron》2022,110(8):1416-1431.e13
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

14.
《Cell》2023,186(7):1369-1381.e17
  1. Download : Download high-res image (199KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
《Cell》2021,184(24):5902-5915.e17
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

17.
How are memories stored and retrieved? It was one of the most discussed questions in the past century by neuroscientists. Leading studies of the period brought two different explanations to this question: The first statement considers memory as a physiological change in the brain and suggest that the retrieval of memory is only occurred by the same physiologic changes observed during the memory formation, while the second suggests that memory is a psychic mood stored in mind and the retrieval of memory is occurred by mystical energy fluctuations. Although the exact reason and the pathogenesis of Alzheimer's disease have not yet been fully understood, the approaches that centered the retrieval strategy of lost memory constitutes the basis of the treatment strategies in Alzheimer's disease today. The majority of treatment studies has based on the manipulation of the cholinergic system; however, although serotonin has mnemonic effects, its role in the pathogenesis of Alzheimer's disease has not been investigated as much as the cholinergic system. Here we show how serotonin affects the pathogenesis of Alzheimer's disease in a comprehensive perspective and we suggest that the optogenetics manipulation of serotonin nuclei retrieve the lost memory by closing the inward-rectifier potassium channel Kir2 on the memory engram cells. Also, we raise the possible effects of serotonin on the memory engram cells and the interactions between the amyloid-centric hypothesis of Alzheimer's disease and the memory engram hypothesis to explain the pathophysiology of memory loss in Alzheimer's disease.  相似文献   

18.
The hippocampus and caudate nucleus are anatomical components of relatively independent memory systems and recent research has focused on the nature of the interaction between these two systems. The amygdala exerts a general modulatory influence on memory storage processes related, in part, to an organism's level of affective or emotional arousal. Moreover, affective state can influence the use of different memory systems, and the amygdala may mediate this effect of emotion on memory. Recent evidence indicates that the amygdala modulates the separate types of memory mediated by the hippocampus and caudate nucleus. Recent human brain imaging studies also point to both sex- and hemisphere-related asymmetries in amygdala participation in emotionally influenced memory.  相似文献   

19.
The synaptic plasticity and memory hypothesis asserts that activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation and is both necessary and sufficient for the encoding and trace storage of the type of memory mediated by the brain area in which it is observed. Criteria for establishing the necessity and sufficiency of such plasticity in mediating trace storage have been identified and are here reviewed in relation to new work using some of the diverse techniques of contemporary neuroscience. Evidence derived using optical imaging, molecular-genetic and optogenetic techniques in conjunction with appropriate behavioural analyses continues to offer support for the idea that changing the strength of connections between neurons is one of the major mechanisms by which engrams are stored in the brain.  相似文献   

20.
This paper explores the question of how ritual can heal community pain or trauma. Drawing together recent insights into the ideological nature of healing with a focus on ritual process, I argue that in cases of social violence and healing, ritual's ability to assuage pain is linked to the ways in which it draws pain into the process of reconstructing memory. The argument is illustrated through an examination of how the Betsimisaraka of east Madagascar used rituals of cattle sacrifice to transform the pain they experienced during an anticolonial rebellion that took place in 1947.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号