首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein M (apoM), a lipocalin family member, preferentially associates with plasma HDL and binds plasma sphingosine 1-phosphate (S1P), a signaling molecule active in immune homeostasis and endothelial barrier function. ApoM overexpression in ABCA1-expressing HEK293 cells stimulated larger nascent HDL formation, compared with cells that did not express apoM; however, the in vivo role of apoM in HDL metabolism remains poorly understood. To test whether hepatic apoM overexpression increases plasma HDL size, we generated hepatocyte-specific apoM transgenic (APOM Tg) mice, which had an ∼3–5-fold increase in plasma apoM levels compared with wild-type mice. Although HDL cholesterol concentrations were similar to wild-type mice, APOM Tg mice had larger plasma HDLs enriched in apoM, cholesteryl ester, lecithin:cholesterol acyltransferase, and S1P. Despite the presence of larger plasma HDLs in APOM Tg mice, in vivo macrophage reverse cholesterol transport capacity was similar to that in wild-type mice. APOM Tg mice had an ∼5-fold increase in plasma S1P, which was predominantly associated with larger plasma HDLs. Primary hepatocytes from APOM Tg mice generated larger nascent HDLs and displayed increased sphingolipid synthesis and S1P secretion. Inhibition of ceramide synthases in hepatocytes increased cellular S1P levels but not S1P secretion, suggesting that apoM is rate-limiting in the export of hepatocyte S1P. Our data indicate that hepatocyte-specific apoM overexpression generates larger nascent HDLs and larger plasma HDLs, which preferentially bind apoM and S1P, and stimulates S1P biosynthesis for secretion. The unique apoM/S1P-enriched plasma HDL may serve to deliver S1P to extrahepatic tissues for atheroprotection and may have other as yet unidentified functions.  相似文献   

2.
ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 ± 0.13 μM, P = 0.003, and 1.23 ± 0.10 μM, P = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 μM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.  相似文献   

3.
Apolipoprotein M (apoM), a plasma sphingosine 1-phosphate (S1P) carrier, associates with plasma HDL via its uncleaved signal peptide. Hepatocyte-specific apoM overexpression in mice stimulates formation of both larger nascent HDL in hepatocytes and larger mature apoM/S1P-enriched HDL particles in plasma by enhancing hepatic S1P synthesis and secretion. Mutagenesis of apoM glutamine 22 to alanine (apoMQ22A) introduces a functional signal peptidase cleavage site. Expression of apoMQ22A in ABCA1-expressing HEK293 cells resulted in the formation of smaller nascent HDL particles compared with wild type apoM (apoMWT). When apoMQ22A was expressed in vivo, using recombinant adenoviruses, smaller plasma HDL particles and decreased plasma S1P and apoM were observed relative to expression of apoMWT. Hepatocytes isolated from both apoMWT- and apoMQ22A-expressing mice displayed an equivalent increase in cellular levels of S1P, relative to LacZ controls; however, relative to apoMWT, apoMQ22A hepatocytes displayed more rapid apoM and S1P secretion but minimal apoMQ22A bound to nascent lipoproteins. Pharmacologic inhibition of ceramide synthesis increased cellular sphingosine and S1P but not medium S1P in both apoMWT and apoMQ22A hepatocytes. We conclude that apoM secretion is rate-limiting for hepatocyte S1P secretion and that its uncleaved signal peptide delays apoM trafficking out of the cell, promoting formation of larger nascent apoM- and S1P-enriched HDL particles that are probably precursors of larger apoM/S1P-enriched plasma HDL.  相似文献   

4.
Apolipoprotein E (apoE) plays important roles in lipid homeostasis, anti-inflammation, and host defense. Since tissue apoE mRNA levels have been reported to decrease during inflammatory responses, we were surprised to find that plasma apoE levels were significantly elevated during septic infections in both humans and mice. This apparent paradox was also observed during lipopolysaccharide-induced acute inflammation in mice: plasma levels of apoE increased up to 4-fold despite sharply decreased apoE gene expression in the liver, macrophages, and extrahepatic tissues. We hypothesized that apoE levels were augmented by decreased plasma clearance. Our analysis revealed that apoE associated principally with HDL in mice and that apoE was cleared from the circulation principally via LDL receptors. The acute inflammatory response decreased LDL receptor expression in the liver and significantly reduced the rate of apoE clearance. In contrast, the same inflammatory stimuli increased LDL receptor expression in macrophages. Our results define a novel acute phase mechanism that increases circulating apoE levels as apoE production decreases. Diminished hepatic LDL receptor expression may thus cooperate with elevated LDL receptor expression in macrophages to facilitate the forward transport of apoE and its associated lipids to these key defense cells.  相似文献   

5.
Abstract: Both apolipoprotein E (apoE) and the low-density lipoprotein (LDL) receptor are present in brain; however, little is known regarding the function of these proteins in brain, in particular with respect to brain cholesterol. The role of apoE and the LDL receptor in modulating the transbilayer or asymmetric distribution of cholesterol in the exofacial and cytofacial leaflets of synaptic plasma membranes (SPMs) was examined in mutant mice deficient in apoE, the LDL receptor, or both proteins by using the fluorescent sterol dehydroergosterol and fluorescent quenching procedures. Fluidity of the exofacial and cytofacial leaflets was also measured. Cholesterol asymmetry of SPMs was altered in the mutant mice, with the largest effect observed in the LDL receptor-deficient mice. There was an approximately twofold increase in the percent distribution of cholesterol in the exofacial leaflet of the LDL receptor-deficient mice (32%) compared with C57BL/6J mice (15%). Mice deficient in apoE or both proteins also showed a significantly higher percent distribution of cholesterol (23 and 26%, respectively) in the exofacial leaflet compared with the C57BL/6J mice. Although the percent distribution of cholesterol was highest in the exofacial leaflet of the LDL receptor-deficient mice, fluidity of the exofacial leaflet of that group was significantly lower. However, the cholesterol-to-phospholipid ratio of SPMs of the LDL receptor-deficient mice was significantly lower, and this difference was largely the result of a significant increase in the total amount of SPM phospholipid. This study demonstrates for the first time that SPM lipid structure is altered in mice deficient in apoE or the LDL receptor. Although the mechanism that maintains the asymmetric distribution of cholesterol in plasma membranes is not well understood, data of the present experiments indicate that both apoE and the LDL receptor are involved in maintaining the transbilayer distribution of cholesterol.  相似文献   

6.
Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom−/−) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom−/− mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5−/−), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5−/− mice. In contrast to Apom−/− mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations.  相似文献   

7.
Withdrawing growth factors or serum from endothelial cells leads to the activation of effector caspases 3 and 7, resulting in apoptotic cell death. HDL protects against caspase induction through sphingosine-1-phosphate (S1P) receptors. This anti-caspase activity of HDL is antagonized by VLDL from apolipoprotein E4 (apoE4) (genotype, APOE4/4; apolipoprotein, apoE) targeted replacement (TR) mice, but not by VLDL from TR APOE3/3 mice, and requires the binding of apoE4-VLDL to an LDL receptor family member. In the absence of HDL, apoE4-VLDL and apoE3-VLDL from TR mice have limited antiapoptotic activity. In contrast, we show here that a high-fat/high-cholesterol/cholate diet (HFD) radically alters this biological activity of VLDL. On HFD, both apoE3-VLDL and apoE4-VLDL (HFD VLDL) inhibit caspase 3/7 activation initiated by serum withdrawal. This activity of HFD VLDL is independent of an LDL receptor family member but requires the activation of S1P(3) receptors, as shown by the ability of pharmacological block of S1P receptors by VPC 23019 and by small interfering RNA-mediated downregulation of S1P(3) receptors to inhibit HFD VLDL anticaspase activity.  相似文献   

8.
Apolipoprotein M (apoM) is a novel apolipoprotein with unknown function. In this study, we established a method for isolating apoM-containing lipoproteins and studied their composition and the effect of apoM on HDL function. ApoM-containing lipoproteins were isolated from human plasma with immunoaffinity chromatography and compared with lipoproteins lacking apoM. The apoM-containing lipoproteins were predominantly of HDL size; approximately 5% of the total HDL population contained apoM. Mass spectrometry showed that the apoM-containing lipoproteins also contained apoJ, apoA-I, apoA-II, apoC-I, apoC-II, apoC-III, paraoxonase 1, and apoB. ApoM-containing HDL (HDL(apoM+)) contained significantly more free cholesterol than HDL lacking apoM (HDL(apoM-)) (5.9 +/- 0.7% vs. 3.2 +/- 0.5%; P < 0.005) and was heterogeneous in size with both small and large particles. HDL(apoM+) inhibited Cu(2+)-induced oxidation of LDL and stimulated cholesterol efflux from THP-1 foam cells more efficiently than HDL(apoM-). In conclusion, our results suggest that apoM is associated with a small heterogeneous subpopulation of HDL particles. Nevertheless, apoM designates a subpopulation of HDL that protects LDL against oxidation and stimulates cholesterol efflux more efficiently than HDL lacking apoM.  相似文献   

9.
We have used adenovirus-mediated gene transfer and bolus injection of purified apolipoprotein E (apoE) in mice to determine the contribution of LDL receptor family members in the clearance of apoE-containing lipoproteins in vivo and the factors that trigger hypertriglyceridemia. A low dose [5 x 10(8) plaque-forming units (pfu)] of an adenovirus expressing apoE4 did not normalize plasma cholesterol levels of apolipoprotein E-deficient (apoE(-/-)) x low density lipoprotein receptor-deficient (LDLr(-/-)) mice and induced hypertriglyceridemia. A similar phenotype of combined dyslipidemia was induced in apoE(-/-) or apoE(-/-) x LDLr(-/-) mice after infection with a low dose (4 x 10(8) pfu) of an adenovirus expressing the apoE4[R142V/R145V] mutant previously shown to be defective in receptor binding. In contrast, a low dose of 5 x 10(8) pfu of the apoE4-expressing adenovirus corrected hypercholesterolemia in apoE(-/-) mice and did not trigger hypertriglyceridemia. Bolus injection of purified apoE in apoE(-/-) x LDLr(-/-) mice did not clear plasma cholesterol levels and induced mild hypertriglyceridemia. In contrast, similar injection of apoE in apoE(-/-) mice cleared plasma cholesterol and caused transiently mild hypertriglyceridemia. These findings suggest that a) the LDL receptor alone can account for the clearance of apoE-containing lipoproteins in mice, and the contribution of other receptors is minimal, and b) defects in either the LDL receptor or in apoE that affect its interactions with the LDL receptor, increase the sensitivity to apoE-induced hypertriglyceridemia in mice.  相似文献   

10.
The factors involved in the generation of larger high density lipoprotein (HDL) particles, HDL1 and HDLc, are still not well understood. Administration of a specific synthetic liver X receptor (LXR) agonist, T0901317, in mice resulted in an increase of not only HDL cholesterol but also HDL particle size (Cao, G., Beyer, T. P., Yang, X. P., Schmidt, R. J., Zhang, Y., Bensch, W. R., Kauffman, R. F., Gao, H., Ryan, T. P., Liang, Y., Eacho, P. I., and Jiang, X. C. (2002) J. Biol. Chem. 277, 39561-39565). We have investigated the roles that apoE and CETP may play in this process. We treated apoE-deficient, cholesterol ester transport protein (CETP) transgenic, and wild type mice with various doses of the LXR agonist and monitored their HDL levels. Fast protein liquid chromatography and apolipoprotein analysis revealed that in apoE knockout mouse plasma, there was neither induction of larger HDL formation nor increase of HDL cholesterol, suggesting that apoE is essential for the LXR agonist effects on HDL metabolism. In CETP transgenic mice, CETP expression completely abolished LXR agonist-mediated HDL enlargement and greatly attenuated HDL cholesterol levels. Analysis of HDL particles by electron microscope and nondenaturing gel electrophoresis revealed similar findings. In apoE-deficient mice, LXR agonist also produced a significant increase in very low density lipoprotein/low density lipoprotein cholesterol and apolipoprotein B content. Our studies provide direct evidence that apoE and CETP are intimately involved in the accumulation of the enlarged HDL (HDL1 or HDLc) particles in mice.  相似文献   

11.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

12.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

13.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

14.
15.
Pregnancy is associated with increases in plasma total cholesterol (TC) and triglycerides (TG). Individuals with decreased LPL activity have a mild form of hypertriglyceridemia. Variations in the apolipoprotein E (apoE) gene have been associated with increases in plasma TG in addition to differences in plasma TC, LDL cholesterol (LDL-C), and HDL cholesterol (HDL-C). Because of the overproduction of TG-rich VLDL, normal pregnancy challenges the lipolytic capacity of LPL and the clearance of remnants particles. During pregnancy, LPL and apoE polymorphisms may contribute to hypertriglyceridemia. This study investigated the impact of three LPL polymorphisms and the apoE genotypes on lipid levels during pregnancy. Fasting plasma lipids were measured and analyses of the LPL and apoE polymorphisms were performed in 250 women in the third trimester of pregnancy. S447X carriers had lower TG (P = 0.003), and N291S carriers had lower HDL-C (P < 0.02) and higher fractional esterification rate of HDL (FER(HDL)) (P = 0.007), a measure of HDL particle size, than the noncarriers. The E2 allele was associated with lower TC, LDL-C, and FER(HDL) (P < 0.05) compared to the E3/E3 genotype. These findings support that LPL and apoE polymorphisms play an important role in lipid metabolism in pregnancy. The relationship of these polymorphisms to risk of coronary heart disease in women requires further study.  相似文献   

16.

Objective

The HDL associated apolipoprotein M (apoM) protects against experimental atherosclerosis but the mechanism is unknown. ApoM increases preβ-HDL formation. We explored whether plasma apoM affects mobilization of cholesterol from peripheral cells in mice.

Methods and results

ApoM-enriched HDL from apoM-transgenic mice increased the in vitro efflux of 3H-cholesterol from macrophages by 24 ± 3% (p < 0.05) as compared with HDL from wild type (WT) mice, thus confirming previous findings. However, apoM-free HDL was not poorer than that of WT HDL to mobilize 3H-cholesterol. 3H-cholesterol-labeled foam cells were implanted in the peritoneal cavity of apoM−/−, WT and apoM-transgenic mice to assess the mobilization of cholesterol from foam cells in vivo and subsequent excretion into feces. The results showed a statistically non-significant trend towards increased mobilization of cellular cholesterol to plasma with increasing plasma apoM. However, the apoM-genotype did not affect the excretion of 3H-cholesterol in feces. Nevertheless, when apoM−/−, apoM-transgenic and WT mice received a constant intravenous infusion of 13C2-cholesterol/intralipid for 5 h, the rate of enrichment of blood free cholesterol with free 13C2-cholesterol was significantly lower (consistent with an increase in flux of unlabeled free cholesterol into the plasma) in the apoM-transgenic (3.0 ± 0.9‰/h) as compared to WT (5.7 ± 0.9‰/h, p < 0.05) and apoM−/− (6.5 ± 0.6‰/h, p < 0.01) mice.

Conclusion

The present data indicate that the plasma apoM levels modulate the ability of plasma to mobilize cellular cholesterol, whereas apoM has no major effect on the excretion of cholesterol into feces.  相似文献   

17.
载脂蛋白M     
载脂蛋白M(apoM)是一类在血液中主要与高密度脂蛋白(HDL)结合的载脂蛋白,呈组织特异性表达且有着众多生物学功能.体内外多种因素可从转录或转录后水平对其表达进行调控:肝细胞核因子-1α,4α(HNF-1α,4α)、肝受体同系物-1(LRH-1)、叉头框转录因子a2(Foxa2)、血小板活化因子(PAF)等可上调其表达;肝X受体(LXR)、维甲酸X受体(RXR)、法尼酯X受体(FXR)、小异源二聚体-1(SHP-1)以及绝大多数细胞因子可下调其表达,具体调节机制复杂. 结构上,apoM含有一个特征性的疏水性信号肽,可结合1 磷酸鞘氨醇(S1P)等小的生物活性脂,以此介导多项生命活动. 功能上,apoM能促进preβ-HDL的生成,并提高其一系列抗动脉粥样硬化的生物活性,如胆固醇逆向转运、抗炎、以及低密度脂蛋白(LDL)的抗氧化等.在一些糖尿病病人体内,apoM的含量也显著降低,而apoM含量的提高可以降低血糖含量,增加胰岛素分泌以及改善胰岛素抵抗,不少学者将其视为该病发生发展的一项预测指标.本文就近年来对apoM的生物学特性,特别是其表达调控机制和功能的研究进展进行综述.  相似文献   

18.
19.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

20.
Apolipoprotein E2, which has an R158 for C substitution, has reduced affinity for the LDL receptor and is associated with type III hyperlipoproteinemia in humans. Consistent with these observations, we have found that following adenovirus-mediated gene transfer, full-length apoE2 aggravates the hypercholesterolemia and induces hypertriglyceridemia in E-deficient mice and induces combined hyperlipidemia in C57BL/6 mice. Unexpectedly, the truncated apoE2-202 form that has an R158 for C substitution when expressed at levels similar to those of the full-length apoE2 normalized the cholesterol levels of E-deficient mice without induction of hypertriglyceridemia. The apoE2 truncation increased the affinity of POPC-apoE particles for the LDL receptor, and the full-length apoE2 had a dominant effect in VLDL triglyceride secretion. Hyperlipidemia in normal C57BL/6 mice was prevented by coinfection with equal doses of each, the apoE2 and the apoE2-202-expressing adenoviruses, indicating that truncated apoE forms have a dominant effect in remnant clearance. Hypertriglyceridemia was completely corrected by coinfection of mice with an adenovirus-expressing wild-type lipoprotein lipase, whereas an inactive lipoprotein lipase had a smaller effect. The findings suggest that the apoE2-induced dyslipidemia is not merely the result of substitution of R158 for C but results from increased secretion of a triglyceride-enriched VLDL that cannot undergo lipolysis, inhibition of LpL activity, and impaired clearance of chylomicron remnants. Infection of E(-)(/)(-)xLDLr(-)(/)(-) double-deficient mice with apoE2-202 did not affect the plasma cholesterol levels, and also did not induce hypertriglyceridemia. In contrast, apoE2 exacerbated the hypercholesterolemia and induced hypertriglyceridemia, suggesting that the LDL receptor is the predominant receptor in remnant clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号