首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reperfusion (restoration of blood flow) after a period of ischemia (interruption of blood flow) can paradoxically place tissues at risk of further injury: so-called ischemia–reperfusion injury or IR injury. Recent studies have shown that postconditioning (intermittent periods of further ischemia applied during reperfusion) can reduce IR injury. We develop a mathematical model to describe the reperfusion and postconditioning process following an ischemic insult, treating the blood vessel as a two-dimensional channel, lined with a monolayer of endothelial cells that interact (respiration and mechanotransduction) with the blood flow. We investigate how postconditioning affects the total cell density within the endothelial layer, by varying the frequency of the pulsatile flow and the oxygen concentration at the inflow boundary. We find that, in the scenarios we consider, the pulsatile flow should be of high frequency to minimize cellular damage, while oxygen concentration at the inflow boundary should be held constant, or subject to only low-frequency variations, to maximize cell proliferation.  相似文献   

2.
3.
Gordeeva  A. E.  Kurganova  E. A.  Novoselov  V. I. 《Biophysics》2021,66(5):840-847
Biophysics - Oxidative stress caused by ischemia–reperfusion kidney injury may play a key role in liver dysfunction. To reduce liver and kidney damage in ischemia–reperfusion kidney...  相似文献   

4.
Intestinal ischemia–reperfusion injury is one of the main factors leading to multiple organ failure after resuscitation of prolonged hemorrhagic shock; however, the current conventional fluid resuscitation still cannot effectively reduce intestinal injury caused by prolonged hemorrhagic shock. To investigate the effect of ECMO resuscitation on alleviating intestinal ischemia–reperfusion injury in a prolonged hemorrhagic shock rabbit model. Thirty New Zealand white rabbits were randomly divided into three groups: control group, conventional fluid resuscitation group, and ECMO resuscitation group. The prolonged hemorrhagic shock model was established by keeping the arterial blood pressure from 31 to 40 mmHg for 3 h through the femoral artery bleeding, and performing the resuscitation for 2 h by conventional fluid resuscitation and ECMO resuscitation, respectively. Chiu’s score of intestinal injury, serum lactate and TNF-α levels, intestinal mucosamyeloperoxidase (MPO) activity, intercellular adhesion molecule (ICAM-1), and Claudin-1expression were detected. The mean arterial blood pressure in Group 2 was significantly higher after resuscitation than in Group 1, but serum lactate and inflammatory cytokines TNF-α level were significantly lower. And Chiu’s score of intestinal injury and myeloperoxidase (MPO) activity level and ICAM-1 expression were significantly lower in the ECMO resuscitation group, in which the Claudin-1 levels were significantly increased. ECMO resuscitation for the prolonged hemorrhagic shock improves tissue perfusion and reduces the systemic inflammation, and thus alleviates intestinal damage caused by prolonged hemorrhagic shock.  相似文献   

5.
We investigated the neuroprotective effects of Apocynum venetum leaf extract (AVLE) on a rat model of cerebral ischemia-reperfusion injury and explored the underlying mechanisms. Rats were randomly divided into five groups: sham, ischemia-reperfusion, AVLE125, AVLE250, and AVLE500. Cerebral ischemia was induced by 1.5 h of occlusion of the middle cerebral artery. Cerebral infarct area was measured by tetrazolium staining at 24 and 72 h after reperfusion, and neurological function was evaluated at 24, 48 and 72 h after reperfusion. Pathological changes on the ultrastructure of the blood-brain barrier (BBB) were observed by transmission electron microscopy. BBB permeability was assessed by detecting leakage of Evan's blue (EB) dye in brain tissue. The expression and activities of matrix metalloproteinase (MMP)-9/-2 were measured by western blot analyses and gelatin zymography at 24 h after reperfusion. AVLE (500 mg/kg/day) significantly reduced cerebral infarct area, improved recovery of neurological function, relieved morphological damage to the BBB, reduced water content and EB leakage in the brain, and downregulated the expression and activities of MMP-9/-2. These findings suggest that AVLE protects against cerebral ischemia-reperfusion-induced injury by alleviating BBB disruption. This action may be due to its inhibitory effects on the expression and activities of MMP-9/-2.  相似文献   

6.
KB-R7943 reduces lethal reperfusion injury under normal conditions, but its effectiveness under certain pathological states is in dispute. In the present study, we sought to determine the effect of KB-R7943 in hyperlipidemic animals and assess if the K ATP + are involved in the protective mechanisms. In group 1 (G1), isolated rat hearts underwent 25 min global ischemia (GI) and 120 min reperfusion (R). In group 2 (G2), G1 was repeated but the animals were subjected to a 1.5 % cholesterol-enriched diet during 6 weeks (hypercholesterolemic animals). In group 3 (G3), G2 was repeated but 1 μM KB-R7943 was added to the perfusate for 10 min from the start of reperfusion. In group 4 (G4), G3 was repeated, and glibenclamide (K ATP + , blocker, 0.3 μM) was administered. The infarct size was measured by triphenyltetrazolium. The infarct size was 35 ± 5.0 % in G1 and 46 ± 8.7 % in G2 (P < 0.05); KB-R7943 reduced the infarct size (28.6 ± 3.3 % in G3 vs. G2, P < 0.05). In addition, KB-R7943 attenuated apoptotic cell (G3 vs. G2, P < 0.05), but glibenclamide abolished the effect reached by KB-R7943. Thus, diet-induced hypercholesterolemia enhances myocardial injury; KB-R7943 reduces infarct size and apoptosis in hyperlipidemic animals through the activation of K+ATP channels.  相似文献   

7.
Despite efforts to elucidate its pathophysiology, ischemia–reperfusion injury lacks an effective preventative intervention. Because transient receptor potential cation channel subfamily M member 4 (TRPM4) is functionally expressed by many cell types in the cardiovascular system and is involved in the pathogenesis of various cardiovascular diseases, we decided to assess its suitability as a target of therapy. Thus, the aim of this study was to examine the possible cardioprotective effect of 9-phenanthrol, a specific inhibitor of TRPM4. Isolated Langendorff-perfused rat hearts were pretreated with Krebs–Henseleit (K–H) solution (control), 9-phenanthrol, or 5-hydroxydecanoate (5-HD, a blocker of the ATP-sensitive potassium channel) and then subjected to global ischemia followed by reperfusion with the K–H solution. To evaluate the extent of heart damage, lactate dehydrogenase (LDH) activity in the effluent solution was measured, and the size of infarcted area of the heart was measured by 2,3,5-triphenyltetrazolium chloride staining. In controls, cardiac contractility decreased, and LDH activity and the infarcted area size increased. In contrast, in hearts pretreated with 9-phenanthrol, contractile function recovered dramatically, and the infarcted area size significantly decreased. The cardioprotective effects of 9-phenanthrol was not completely blocked by 5-HD. These findings show that 9-phenanthrol exerts a cardioprotective effect against ischemia in the isolated rat heart and suggest that its mechanism of action is largely independent of ATP-sensitive potassium channels.  相似文献   

8.
Even though cardiovascular disease is the leading cause of death for men and women, the vast majority of animal studies use male animals. Because female reproductive hormones have been associated with cardioprotective states, many investigators avoid using female animals because these hormones are cyclical and may introduce experimental variability. In addition, no studies have investigated the specific effects of the estrous cycle on cardiac ischemic injury. This study was conducted to determine whether the estrous cycle stage influences the susceptibility to ischemic injury in rat hearts. Estrous cycle stage was determined by using vaginal smear cytology, after which hearts underwent either in vivo (surgical) or ex vivo (isolated) ischemia–reperfusion injury. For in vivo studies, the left anterior coronary artery was ligated for 25 min of ischemia and subsequently released for 120 min of reperfusion. Infarct sizes were 42% ± 6%; 49% ± 4%; 40% ± 9%; 47% ± 9% of the zone-at-risk for rats in proestrus, estrus, metestrus, and diestrus, respectively. For ex vivo studies, isolated, perfused hearts underwent global ischemia and reperfusion for 25 and 120 min, respectively. Similar to our in vivo studies, the ex vivo rat model showed no significant differences in susceptibility to infarction or extent of cardiac arrhythmia according to estrous stage. To our knowledge, these studies provide the first direct evidence that the stage of estrous cycle does not significantly alter cardiac ischemia–reperfusion injury in rats.Abbreviations: VF, ventricular fibrillation; VT, ventricular tachycardiaCardiovascular disease remains the leading cause of morbidity and mortality throughout the industrialized world, with ischemic heart disease being a major manifestation of cardiovascular disease. Many investigators use animal models to advance our understanding of the etiology and mechanisms involved. Although ischemic heart disease is the leading cause of death for both men and women, the overwhelming majority of studies use male animals. Perhaps the most common reason for this practice is that physiologic fluctuations in female reproductive hormones such as estrogen may be a confounding variable, given the influence of female reproductive hormones on various organ systems.25 Despite the assertion that cyclical variations in female reproductive hormones may confound experimental studies, few data are available that support estrous-cycle–dependent variations in susceptibility to ischemic heart injury.Epidemiologic studies suggest that, compared with men, women have lower cardiac mortality prior to undergoing menopause.40 Consistent with human studies, experimental models in several species commonly show that the degree of cardiac injury in young female animals is lower than that in male counterparts.7,9,21,22,42 Exogenous administration of estrogen has a clear effect in reducing injury,14,15 but whether endogenous cyclical variations in female reproductive hormones affect cardiac injury is not known.Rats and mice are commonly used species to examine cardiac ischemia–reperfusion injury. Unlike humans, rodents do not undergo menstruation, during which the uterine endometrium sloughs off and is expelled through the vagina, but rather the uterine lining of rodents is reabsorbed during an estrous cycle.24 The rat estrous cycle is typically 4 to 5 d in length and is defined by 4 separate stages: proestrus, estrus, metestrus, and diestrus. Proestrus is characterized by increasing levels of estrogen. At the end of proestrus, ovulation (signaled by luteinizing hormone) occurs and marks the beginning of the estrus cycle. During metestrus and diestrus, the uterine lining regenerates, and the cycle starts again.24,33 These stages induce changes in the composition of the epithelium of the vagina and the presence of inflammatory cells, which can easily be detected by using vaginal cytology.18,35We conducted the current study to determine whether estrous cycle stage influences the susceptibility to ischemia–reperfusion injury in the rat heart. Because the stage of the estrous cycle may influence cardiac injury either directly (via a direct effect of circulating hormones), or indirectly (by inducing changes that are intrinsic to the heart), we used both in vivo and ex vivo models of injury.  相似文献   

9.
10.
The present study aims to explore whether Mg infusion has a preventive effect on ischemia–reperfusion injury in rats. A total of 20 Sprague-Dawley-type adult male rats were used. In group 1 (control), 0.9% isotonic solution was administered. In group 2 (experiment), magnesium sulfate (0.5 mg per 100 g) was administered. Ischemia was induced for 15 min for the two groups. Magnesium (Mg), interleukin 8 (IL-8), and malondialdehyde levels were analyzed in blood, while edema, neutrophil infiltration, eosinophilia, loss of striation, and nucleolization were evaluated in histopathological examination. Mg levels in the experiment group were higher than those in the control group after ischemia–reperfusion (p < 0.05). In the control group, postischemia and postreperfusion IL-8 values were higher than preoperative values (p < 0.05). As for eosinophilia and loss of striation values, these were higher in the experiment group after ischemia–reperfusion than the values in the control group (p < 0.05). Histopathologically, Mg infusion cannot prevent the tissue injury triggered in ischemia–reperfusion periods. Eosinophilia can be one of the major and earliest markers of ischemia–reperfusion injury.  相似文献   

11.
Zheng  Yafei  Wu  Yuyun  Liu  Ying  Guo  Zhirui  Bai  Tingting  Zhou  Ping  Wu  Jin  Yang  Qin  Liu  Zhengxia  Lu  Xiang 《Neurochemical research》2019,44(7):1549-1566

This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.

  相似文献   

12.

Background

Our previous studies suggested that deoxyschizandrin (DSD) and schisantherin A (STA) may have cardioprotective effects, but information in this regard is lacking. Therefore, we explored the protective role of DSD and STA in myocardial ischemia–reperfusion (I/R) injury.

Methodology/Principal Findings

Anesthetized male rats were treated once with DSD and STA (each 40 µmol/kg) through the tail vein after 45 min of ischemia, followed by 2-h reperfusion. Cardiac function, infarct size, biochemical markers, histopathology and apoptosis were measured and mRNA expression of gp91phox in myocardial tissue assessed by RT-PCR. Neonatal rat cardiomyocytes were pretreated with DSD and STA and then damaged by H2O2. Cell apoptosis was tested by a flow cytometric assay. Compared with the I/R group: (i) DSD and STA could significantly reduce the abnormalities of LVSP, LVEDP, ±dp/dtmax and arrhythmias, thereby showing their protective roles in cardiac function; (ii) DSD and STA could significantly attenuate the infarct size and MDA release while increasing SOD activity, suggesting a role in reducing myocardial injury; (iii) tissue morphology and myocardial textual analysis revealed that DSD and STA mitigated changes in myocardial histopathology; (iv) DSD and STA decreased apoptosis (33.56±2.58% to 10.28±2.80% and 10.98±1.99%, respectively) and caspase-3 activity in the myocardium (0.62±0.02 OD/mg to 0.38±0.02 OD/mg and 0.32±0.02 OD/mg, respectively), showing their protective effects upon cardiomyocytes; and (v) DSD and STA had similar protective effects on I/R injury as those seen with the positive control metoprolol. In vitro, DSD and STA could significantly decrease the apoptosis of neonatal cardiomyocytes.

Conclusions/Significance

These data suggest that DSD and STA can protect against myocardial I/R injury. The underlining mechanism may be related to their role in inhibiting cardiomyocyte apoptosis.  相似文献   

13.
The purpose of the present study was to demonstrate the contribution of pulmonary-generated reactive oxygen species (ROS) on cardiac dysfunction using a rat model of ischemia–reperfusion (IR) injury. Three groups of rats were subjected to regional IR injury in (i) lung, (ii) heart, (iii) lung + heart. A fourth (control) group of rats were instrumented using the same methods but without induction IR. Hemodynamic data were recorded in real time. Blood from the proximal aorta was sampled during baseline, ischemia, and reperfusion, mixed with α-phenyl-N-tert-butylnitrone (PBN) for measuring ROS by electron paramagnetic resonance spectrometry. Data were analyzed by a two-way analysis of variance. The results showed that the lung IR generated an increased burst of ROS that resulted in significant cardiac dysfunction, including hypotension and ECG changes. The results indicated that generation of ROS as a result of acute IR lung injury may be sufficiently large enough to cause direct cardiac dysfunction that is independent of injury caused to the myocardium as a result of regional myocardial IR injury alone.  相似文献   

14.
Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia–reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia–reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen–glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia–reperfusion by 14,15-EET.  相似文献   

15.
The MAPK/ERK/p38 are signal transduction pathways that couple intracellular responses to the external stimuli. Contrary to ERK protein which is part of the survival route, presence of p38 could have an impact on cell injury. Tolerance induced by ischemic preconditioning (IPC) is a phenomenon of tissue adaptation, which results in increased tolerance to lethal ischemia-reperfusion injury (IRI). Paper describes changes in MAPK protein pathways after brain IPC. Ischemia was induced by 4-vessels occlusion and rats were preconditioned by sub-lethal ischemia. Western blot and immunohistochemistry identified ERK/p38 proteins in injured areas. The highest level of the pERK was detected at 24 h in IPC groups. A contrary pattern of MAPK/p38 activation was observed in this group, where the lowest level of p38 was displayed at 24 h after ischemia. This suggests that the MAPK signal transduction might have a potential role in tissues response subjected to IRI and in the phenomenon of tolerance.  相似文献   

16.
Zhao  Shuang  Cheng  Wen-Jie  Liu  Xin  Li  Zhao  Li  Hui-Zhou  Shi  Na  Wang  Xiu-Li 《Neurochemical research》2022,47(2):461-469

To evaluate the effects of dexmedetomidine (Dex) and oxycodone (Oxy) on neurocognitive and inflammatory response after tourniquet-induced ischemia–reperfusion (I/R) injury. C57/BL6 mice were used to construct the mouse model of tourniquet-induced I/R injury. Mice (n?=?48) were randomly divided into sham, I/R, Dex or Oxy group. Morris water maze test was performed to assess the spatial learning and memory function. The expression of NF-κB, TLR4, NR2B, M1 (CD68 and TNF-α) and M2 (CD206 and IL-10) polarization markers in mice hippocampus were detected by western blot or immunofluorescent staining. Spontaneous excitatory post-synaptic currents (sEPSCs) were recorded by electrophysiology. Dex treatment alleviated I/R-induced declines in learning and memory (p < 0.05), while Oxy had no significant effect on it. Compared with I/R group, Dex and Oxy treatment down-regulated the expression of NF-κB, TLR4, TNF-α and CD68 (all p < 0.05), while no significantly different was found in CD206 and IL-10. In addition, Dex treatment down-regulated the expression of NR2B and reduced the frequency and amplitude of sEPSCs in I/R model mice (all p < 0.05), while Oxy had no significant effect on them. Tourniquet-induced I/R could impair the neurocognitive function of mice. Dex treatment could alleviate I/R-induced neurocognitive disorder by inhibiting abnormal synaptic transmission in hippocampal neurons. Both Dex and Oxy could alleviate the inflammatory response likely by inhibiting the polarization of microglia toward M1 phenotype via TLR4/NF-κB pathway. Future studies are needed to further examine the effects of Dex on neurocognitive disorder after tourniquet-induced I/R injury and investigate the exact mechanism.

  相似文献   

17.
Tanshinone I (TsI) is an important lipophilic diterpene extracted from Danshen (Radix Salvia miltiorrhizae) and has been used in Asia for the treatment of cerebrovascular diseases such as ischemic stroke. In this study, we examined the neuroprotective effect of TsI against ischemic damage and its neuroprotective mechanism in the gerbil hippocampal CA1 region (CA1) induced by 5 min of transient global cerebral ischemia. Pre-treatment with TsI protected pyramidal neurons from ischemic damage in the stratum pyramidale (SP) of the CA1 after ischemia–reperfusion. The pre-treatment with TsI increased the immunoreactivities and protein levels of anti-inflammatory cytokines [interleukin (IL)-4 and IL-13] in the TsI-treated-sham-operated-groups compared with those in the vehicle-treated-sham-operated-groups; however, the treatment did not increase the immunoreactivities and protein levels of pro-inflammatory cytokines (IL-2 and tumor necrosis factor-α). On the other hand, in the TsI-treated-ischemia-operated-groups, the immunoreactivities and protein levels of all the cytokines were maintained in the SP of the CA1 after transient cerebral ischemia. In addition, we examined that IL-4 injection into the lateral ventricle did not protect pyramidal neurons from ischemic damage. In conclusion, these findings indicate that the pre-treatment with TsI can protect against ischemia-induced neuronal death in the CA1 via the increase or maintenance of endogenous inflammatory cytokines, and exogenous IL-4 does not protect against ischemic damage.  相似文献   

18.
Circumstantial evidence frequently implicates oxygen-derived free radicals and oxidative stress as mediators of myocardial ischemia/reperfusion (I/R) injury. Therefore, external supplementation of natural antioxidants plays a main role as cardioprotective compounds. This study was designed to evaluate the cardioprotective effect of VitaePro (70 mg/kg body weight, 21 days), a novel antioxidant mix of astaxanthin, lutein and zeaxanthin in a rat ex vivo model of ischemia/reperfusion injury. The cardioprotective effect of VitaePro was also compared with vitamin E (70 mg/kg body weight, 21 days) treatment. Rats were randomized into control I/R (CIR), VitaePro I/R (VPIR) and Vitamin E I/R (VEIR). After 21 days of oral treatment, isolated hearts from each group were subjected to 30 min of ischemia followed by 2 h of reperfusion. In the VPIR group compared to CIR and VEIR groups at 2 h of reperfusion, increased left ventricular functional recovery, such as left ventricular developed pressure (92.7 ± 0.7 vs. 85.3 ± 0.3 and 89.4 ± 1.2 mm Hg), dp/dt max (2518.7 ± 77.9 vs. 1962.5 ± 24 and 2255.7 ± 126.6 mm Hg/s), and aortic flow (21.5 ± 1.36 vs. 4.4 ± 0.6 and 13.2 ± 1.02 ml/min) were observed. The infarct size (27.68 ± 1.7 vs. 45.4 ± 1.8 and 35.4 ± 0.6%), apoptotic cardiomyocytes (61.7 ± 10.6 vs. 194.1 ± 14.8 and 118.7 ± 15.4 counts/100 HPF) and thiobarbituric acid reactive substances levels (80 ± 3 vs. 127 ± 5 and 103 ± 2 nM/mg tissue) also were decreased in VPIR group when compared to CIR and VEIR. As evidenced by the data, administration of vitamin E offered substantial cardioprotection to I/R injury, but VitaePro enhanced cardioprotection significantly more than vitamin E treatment. Taken in concert, the results of this study suggests that the oral ingestion of VitaePro protects myocardium from ischemia/reperfusion injury by decreasing oxidative stress and apoptosis, which may be of therapeutic benefit in the treatment of cardiovascular complications. However, further in vivo animal and human intervention studies are warranted before establishing any recommendations about usage of VitaePro for human cardiovascular complications.  相似文献   

19.
The aim of the present study was to reveal the effect of liver ischemia–reperfusion injury (LIRI) on the activity of selected neuronal phenotypes in rat brain by applying dual Fos-oxytocin (OXY), vasopressin (AVP), tyrosine hydroxylase (TH), phenylethanolamine N-methyltransferase (PNMT), corticoliberine (CRH), and neuropeptide Y (NPY) immunohistochemistry. Two liver ischemia–reperfusion models were investigated: (i) single ligation of the hepatic artery (LIRIa) for 30 min and (ii) combined ligation of the portal triad (the common hepatic artery, portal vein, and common bile duct) (LIRIb) for 15 min. The animals were killed 90 min, 5 h, and 24 h after reperfusion. Intact and sham operated rats served as controls. As indicated by semiquantitative estimation, increases in the number of Fos-positive cells mainly occurred 90 min after both liver reperfusion injuries, including activation of AVP and OXY perikarya in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, and TH, NPY, and PNMT perikarya in the catecholaminergic ventrolateral medullar A1/C1 area. Moreover, only PNMT perikarya located in the A1/C1 cell group exhibited increased Fos expression 5 h after LIRIb reperfusion. No or very low Fos expression was found 24 h after reperfusion in neuronal phenotypes studied. Our results show that both models of the LIRI activate, almost by the same effectiveness, a number of different neuronal phenotypes which stimulation may be associated with a complex of physiological responses induced by (1) surgery (NPY, TH, PNMT), (2) hemodynamic changes (AVP, OXY, TH, PNMT), (3) inflammation evoked by ischemia and subsequent reperfusion (TH), and (4) glucoprivation induced by fasting (NPY, PNMT, TH). All these events may contribute by different strength to the development of pathological alterations occurring during the liver ischemia–reperfusion injury.  相似文献   

20.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号