首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively assess tissue engineered human adipose tissue structure and function in vitro. Three-dimensional (3D) vascularized human adipose tissues were engineered in vitro, before being introduced to a perfusion environment and tracked over time by automated quantification of endogenous markers of metabolism using two-photon excited fluorescence (TPEF). Depth-resolved image stacks were analyzed for redox ratio metabolic profiling and compared to prior analyses performed on 3D engineered adipose tissue in static culture. Traditional assessments with H&E staining were used to qualitatively measure extracellular matrix generation and cell density with respect to location within the tissue. The distribution of cells within the tissue and average cellular redox ratios were different between static and perfusion cultures, while the trends of decreased redox ratio and increased cellular proliferation with time in both static and perfusion cultures were similar. These results establish a basis for noninvasive optical tracking of tissue structure and function in vitro, which can be applied to future studies to assess tissue development or drug toxicity screening and disease progression.  相似文献   

3.
The staggering cost of bringing a drug to market coupled with the extremely high failure rate of prospective compounds in early phase clinical trials due to unexpected human toxicity makes it imperative that more relevant human models be developed to better predict drug toxicity. Drug–induced nephrotoxicity remains especially difficult to predict in both pre-clinical and clinical settings and is often undetected until patient hospitalization. Current pre-clinical methods of determining renal toxicity include 2D cell cultures and animal models, both of which are incapable of fully recapitulating the in vivo human response to drugs, contributing to the high failure rate upon clinical trials. We have bioengineered a 3D kidney tissue model using immortalized human renal cortical epithelial cells with kidney functions similar to that found in vivo. These 3D tissues were compared to 2D cells in terms of both acute (3 days) and chronic (2 weeks) toxicity induced by Cisplatin, Gentamicin, and Doxorubicin using both traditional LDH secretion and the pre-clinical biomarkers Kim-1 and NGAL as assessments of toxicity. The 3D tissues were more sensitive to drug-induced toxicity and, unlike the 2D cells, were capable of being used to monitor chronic toxicity due to repeat dosing. The inclusion of this tissue model in drug testing prior to the initiation of phase I clinical trials would allow for better prediction of the nephrotoxic effects of new drugs.  相似文献   

4.
Tissue regeneration and cell therapy have an enormous potential in healthcare through the creation of artificial human tissues and organs. The possibility of producing functional replica of tissues and organs can offer a common, solitary solution for various kinds of inflictions. It can also provide an ultimate test model for drug discovery. There exists convincing evidence that if cells are cultured in extra-cellular matrix (ECM) mimicking 3D scaffolds infused with tissue-specific biochemical cues they grow and differentiate to express functionality. However, comprehensive understanding of ECM and its dynamic relation with the growing cells is vital for creating functional tissue models ex vivo. Different medical and non-medical groups all over the world are working towards achieving affordable, user friendly and technically viable solutions for improving our understanding of Cell-ECM dynamics for tissue engineering (TE). Successful TE, an ambitious goal that includes tissue neogenesis in vitro and functional tissue mending (regenerative medicine) in vivo, however involves innumerable challenges. Present review discusses some of the major technical hurdles that hinder the pace of progress in tissue regeneration/engineering (TE).  相似文献   

5.
Increasing individuals diagnosed with type II diabetes pose a strong demand for the development of more effective anti-diabetic drugs. However, expensive, ethically controversial animal-based screening for anti-diabetic compounds is not always predictive of the human response. The use of in vitro cell-based models in research presents obviously ethical and cost advantages over in vivo models. This study was to develop an in vitro three-dimensional (3D) perfused culture model of islets (Islet TF) for maintaining viability and functionality longer for diabetic drug efficacy tests. Briefly fresh isolated rat islets were encapsulated in ultrapure alginate and the encapsulated islets were cultured in TissueFlex®, a multiple, parallel perfused microbioreactor system for 7 days. The encapsulated islets cultured statically in cell culture plates (3D static) and islets cultured in suspension (2D) were used as the comparisons. In this study we demonstrate for the first time that Islet TF model can maintain the in vitro islet viability, and more importantly, the elevated functionality in terms of insulin release and dynamic responses over a 7-day culture period. The Islet TF displays a high sensitivity in responding to drugs and drug dosages over conventional 2D and 3D static models. Actual drug administration in clinics could be simulated using the developed Islet TF model, and the patterns of insulin release response to the tested drugs were in agreement with the data obtained in vivo. Islet TF could be a more predictive in vitro model for routine short- and long-term anti-diabetic drug efficacy testing.  相似文献   

6.
Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system1,2. These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans3,4. In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types5,6, including neural progenitor cells (NPCs)7,8. Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously5,11. Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures9,10. Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.  相似文献   

7.
“Functional tissue engineering” is a subset of the field of tissue engineering that was proposed by the United States National Committee on Biomechanics over a decade ago in order to place more emphasis on the roles of biomechanics and mechanobiology in tissue repair and regeneration. Over the past decade, there have been tremendous advances in this area, pointing out the critical role that biomechanical factors can play in the engineered repair of virtually all tissue and organ systems. In this special issue of the Journal of Biomechanics, we present a series of articles that address a broad array of the fundamental topics of functional tissue engineering, including: (1) measurement and modeling of the in vivo biomechanical environment and history in native and repair tissues; (2) further understanding of the biomechanical properties of native tissues across all geometric scales, in the context of repair or regeneration; (3) prioritization of specific biomechanical properties as design criteria; (4) development of biomaterials, scaffolds, and engineered tissues with prescribed biomechanical properties; (5) development of success criteria based on appropriate outcome measures; (6) investigation of the effects of mechanical factors on tissue repair in vivo; (7) investigation of the mechanisms by which physical factors may enhance tissue regeneration in vitro; and (8) development and validation of computational models of tissue growth and remodeling. These articles represent the tremendous expansion of this field in recent years, and emphasize the critical roles that biomechanics and mechanobiology play in controlling tissue repair and regeneration.  相似文献   

8.
Despite tremendous advancements in oncology research and therapeutics, cancer remains a primary cause of death worldwide. One of the significant factors in this critical challenge is a precise diagnosis and limited knowledge on how the tumor microenvironment (TME) behaves to the treatment and its role in chemo-resistance. Therefore, it is critical to understand the contribution of a heterogeneous TME in cancer drug response in individual patients for effective therapy management. Micro-physiological systems along with tissue engineering have facilitated the development of more physiologically relevant platforms, known as Organ-on-Chips (OoC). OoC platforms recapitulate the critical hallmarks of the TME in vitro and subsequently abet in sensitivity and efficacy testing of anti-cancer drugs before clinical trials. The OoC platforms incorporating conventional in vitro models enable researchers to control the cellular, molecular, chemical, and biophysical parameters of the TME in precise combinations while analyzing how they contribute to tumor progression and therapy response. This review discusses the application of OoC platforms integrated with conventional 2D cell lines, 3D organoids and spheroid models, and the organotypic tissue slices, including patient-derived and xenograft tumor slice cultures in cancer treatment responses. We summarize the relevance and drawbacks of conventional in vitro models in assessing cancer treatment response, challenges and limitations associated with OoC models, and future opportunities enabled by the OoC technologies towards developing personalized cancer diagnostics and therapeutics.  相似文献   

9.
While 3-D tissue models have received increasing attention over the past several decades in the development of traditional anti-cancer therapies, their potential application for the evaluation of advanced drug delivery systems such as nanomedicines has been largely overlooked. In particular, new insight into drug resistance associated with the 3-D tumor microenvironment has called into question the validity of 2-D models for prediction of in vivo anti-tumor activity. In this work, a series of complementary assays was established for evaluating the in vitro efficacy of docetaxel (DTX) -loaded block copolymer micelles (BCM+DTX) and Taxotere® in 3-D multicellular tumor spheroid (MCTS) cultures. Spheroids were found to be significantly more resistant to treatment than monolayer cultures in a cell line dependent manner. Limitations in treatment efficacy were attributed to mechanisms of resistance associated with properties of the spheroid microenvironment. DTX-loaded micelles demonstrated greater therapeutic effect in both monolayer and spheroid cultures in comparison to Taxotere®. Overall, this work demonstrates the use of spheroids as a viable platform for the evaluation of nanomedicines in conditions which more closely reflect the in vivo tumor microenvironment relative to traditional monolayer cultures. By adaptation of traditional cell-based assays, spheroids have the potential to serve as intermediaries between traditional in vitro and in vivo models for high-throughput assessment of therapeutic candidates.  相似文献   

10.
Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.  相似文献   

11.
Near-infrared (NIR) optical imaging is a noninvasive and nonionizing modality that is emerging as a diagnostic tool for breast cancer. The handheld optical devices developed to date using the NIR technology are predominantly developed for spectroscopic applications. A novel handheld probe-based optical imaging device has been recently developed toward area imaging and tomography applications. The three-dimensional (3D) tomographic imaging capabilities of the device have been demonstrated from previous fluorescence studies on tissue phantoms. In the current work, fluorescence imaging studies are performed on tissue phantoms, in vitro, and in vivo tissue models to demonstrate the fast two-dimensional (2D) surface imaging capabilities of this flexible handheld-based optical imaging device, toward clinical breast imaging studies. Preliminary experiments were performed using target(s) of varying volume (0.23 and 0.45 cm3) and depth (1–2 cm), using indocyanine green as the fluorescence contrast agent in liquid phantom, in vitro, and in vivo tissue models. The feasibility of fast 2D surface imaging (∼5 seconds) over large surface areas of 36 cm2 was demonstrated from various tissue models. The surface images could differentiate the target(s) from the background, allowing a rough estimate of the target''s location before extensive 3D tomographic analysis (future studies).  相似文献   

12.
《Translational oncology》2021,14(11):101203
Chemotherapy resistant high grade serous ovarian cancer remains a clinically intractable disease with a high rate of mortality. We tested a novel glycosylated antitumor ether lipid called l-Rham to assess the in vitro and in vivo efficacy on high grade serous ovarian cancer cell lines and patient samples. l-Rham effectively kills high grade serous ovarian cancer cells grown as 2D or 3D cultures in a dose and time dependent manner. l-Rham efficacy was tested in vivo in a chicken allantoic membrane/COV362 xenograft model, where l-Rham activity was as effective as paclitaxel in reducing tumor weight and metastasis. The efficacy of l-Rham to reduce OVCAR3 tumor xenografts in NRG mice was assessed in low and high tumor burden models. l-Rham effectively reduced tumor formation in the low tumor burden group, and blocked ascites formation in low and high tumor burden animals. l-Rham demonstrates efficacy against OVCAR3 tumor and ascites formation in vivo in NRG mice, laying the foundation for further development of this drug class for the treatment of high grade serous ovarian cancer patients.  相似文献   

13.
As organ-specific three-dimensional cell clusters derived from cancer tissue or cancer-specific stem cells, cancer-derived organoids are organized in the same manner of the cell sorting and spatial lineage restriction in vivo, making them ideal for simulating the characteristics of cancer and the heterogeneity of cancer cells in vivo. Besides the applications as a new in vitro model to study the physiological characteristics of normal tissues and organs, organoids are also used for in vivo cancer cell characterization, anti-cancer drug screening, and precision medicine. However, organoid cultures are not without limitations, i.e., the lack of nerves, blood vessels, and immune cells. As a result, organoids could not fully replicate the characteristics of organs but partially simulate the disease process. This review attempts to provide insights into the organoid models for cancer precision medicine.  相似文献   

14.
Brain tumors are the leading cause of cancer-related deaths in children. Tailored therapies need preclinical brain tumor models representing a wide range of molecular subtypes. Here, we adapted a previously established brain tissue-model to fresh patient tumor cells with the goal of establishing3D in vitro culture conditions for each tumor type.Wereported our findings from 11 pediatric tumor cases, consisting of three medulloblastoma (MB) patients, three ependymoma (EPN) patients, one glioblastoma (GBM) patient, and four juvenile pilocytic astrocytoma (Ast) patients. Chemically defined media consisting of a mixture of pro-neural and pro-endothelial cell culture medium was found to support better growth than serum-containing medium for all the tumor cases we tested. 3D scaffold alone was found to support cell heterogeneity and tumor type-dependent spheroid-forming ability; both properties were lost in 2D or gel-only control cultures. Limited in vitro models showed that the number of differentially expressed genes between in vitro vs. primary tissues, are 104 (0.6%) of medulloblastoma, 3,392 (20.2%) of ependymoma, and 576 (3.4%) of astrocytoma, out of total 16,795 protein-coding genes and lincRNAs. Two models derived from a same medulloblastoma patient clustered together with the patient-matched primary tumor tissue; both models were 3D scaffold-only in Neurobasal and EGM 1:1 (v/v) mixture and differed by a 1-mo gap in culture (i.e., 6wk versus 10wk). The genes underlying the in vitrovs. in vivo tissue differences may provide mechanistic insights into the tumor microenvironment. This study is the first step towards establishing a pipeline from patient cells to models to personalized drug testing for brain cancer.  相似文献   

15.
The overall goal of tissue engineering is to create functional tissue grafts that can regenerate or replace our defective or worn out tissues and organs. Examples of grafts that are now in pre-clinical studies or clinical use include engineered skin, cartilage, bone, blood vessels, skeletal muscle, bladder, trachea, and myocardium. Engineered tissues are also finding applications as platforms for pharmacological and physiological studies in vitro. To fully mobilize the cell's biological potential, a new generation of tissue engineering systems is now being developed to more closely recapitulate the native developmental milieu, and mimic the physiologic mechanisms of transport and signaling. We discuss the interactions between regenerative biology and engineering, in the context of (i) creation of functional tissue grafts for regenerative medicine (where biological input is critical), and (ii) studies of stem cells, development and disease (where engineered tissues can serve as advanced 3D models).  相似文献   

16.
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.  相似文献   

17.
Spheroids are increasingly being employed to answer a wide range of clinical and biomedical inquiries ranging from pharmacology to disease pathophysiology, with the ultimate goal of using spheroids for tissue engineering and regeneration. When compared to traditional two-dimensional cell culture, spheroids have the advantage of better replicating the 3D extracellular microenvironment and its associated growth factors and signaling cascades. As knowledge about the preparation and maintenance of spheroids has improved, there has been a plethora of translational experiments investigating in vivo implantation of spheroids into various animal models studying tissue regeneration.We review methods for spheroid delivery and how they have been utilized in tissue engineering experiments. We break down efforts in this field by organ systems, discussing applications of spheroids to various animal models of disease processes and their potential clinical implications. These breakthroughs have been made possible by advancements in spheroid formation, in vivo delivery and assessment. There is unexplored potential and room for further research and development in spheroid-based tissue engineering approaches. Regenerative medicine and other clinical applications ensure this exciting area of research remains relevant for patient care.  相似文献   

18.
After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell–cell and cell–matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens.  相似文献   

19.
The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms.  相似文献   

20.
The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号