首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Using an in vivo fatty acid model and operational equations, we reported that esterified and unesterified concentrations of docosahexaenoic acid (DHA, 22 : 6 n-3) were markedly reduced in brains of third-generation (F3) rats nutritionally deprived of alpha-linolenic acid (18 : 3 n-3), and that DHA turnover within phospholipids was reduced as well. The concentration of docosapentaenoic acid (DPA, 22 : 5 n-6), an arachidonic acid (AA, 20 : 4 n-6) elongation/desaturation product, was barely detectable in control rats but was elevated in the deprived rats. In the present study, we used the same in vivo model, involving the intravenous infusion of radiolabeled AA to demonstrate that concentrations of unesterified and esterified AA, and turnover of AA within phospholipids, were not altered in brains of awake F3-generation n-3-deficient rats, compared with control concentrations. Brain DPA-CoA could be measured in the deprived but not control rats, and AA-CoA was elevated in the deprived animals. These results indicated that AA and DHA are recycled within brain phospholipids independently of each other, suggesting that recycling is regulated independently by AA- and DHA-selective enzymes, respectively. Competition among n-3 and n-6 fatty acids within brain probably does not occur at the level of recycling, but at levels of elongation and desaturation (hence greater production of DPA during n-3 deprivation), or conversion to bioactive eicosanoids and other metabolites.  相似文献   

2.
Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet.  相似文献   

3.
4.
5.
Long chain n-3 PUFA docosahexaenoic acid (DHA) is important for heart and brain function. Investigations of biologically plausible mechanisms using animal models associate cardioprotection with DHA incorporation into myocardial membranes that are largely derived from supra-physiological fish oil (FO) intake. We measured the incorporation of DHA into myocardial membranes of rats from low dietary FO intake within human dietary range and quantitatively assessed the influence of dietary n-6 PUFA. With rats fed diets containing 0.16%–5% FO, equal to 0.12%–8.7% energy (%en) as eicosapentaenoic acid (EPA) and DHA (EPA+DHA), and either 1.5%en or 7.5%en n-6 PUFA (linoleic acid) for four weeks, dietary n-6:n-3 PUFA ratios ranged from 74 to 0.3. Myocardial DHA concentration increased in a log-linear fashion with a dietary threshold of 0.019%en as EPA+DHA and half maximal dietary [EPA+DHA] equal to 0.29%en (95% CI, 0.23–0.35). Dietary linoleic acid intake did not influence myocardial DHA. Myocardial membranes are sensitive to absolute dietary intake of long chain n-3 PUFA at low %en in the rat, equivalent to a human intake of one meal of fatty fish per week or less. The dietary ratio of n-6:n-3 PUFA has no influence on long chain n-3 PUFA cellular incorporation from dietary fish oil.  相似文献   

6.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

7.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks.  相似文献   

8.
Knowing threshold changes in brain lipids and lipid enzymes during dietary n-3 polyunsaturated fatty acid deprivation may elucidate dietary regulation of brain lipid metabolism. To determine thresholds, rats were fed for 15 weeks DHA-free diets having graded reductions of α-linolenic acid (α-LNA). Compared with control diet (4.6% α-LNA), plasma DHA fell significantly at 1.7% dietary α-LNA while brain DHA remained unchanged down to 0.8% α-LNA, when plasma and brain docosapentaenoic acid (DPAn-6) were increased and DHA-selective iPLA2 and COX-1 activities were downregulated. Brain AA was unchanged by deprivation, but AA selective-cPLA2, sPLA2 and COX-2 activities were increased at or below 0.8% dietary α-LNA, possibly in response to elevated brain DPAn-6. In summary, homeostatic mechanisms appear to maintain a control brain DHA concentration down to 0.8% dietary DHA despite reduced plasma DHA, when DPAn-6 replaces DHA. At extreme deprivation, decreased brain iPLA2 and COX-1 activities may reduce brain DHA loss.  相似文献   

9.
Eicosapentaenoic acid (EPA, 20:5n-3) is being explored as a therapy in neurological diseases and disorders. Although it is known that palmitate is the most abundant fatty acid in the brain while EPA is one of the lowest, the mechanism by which the brain maintains this balance is unclear. Therefore, to trace the metabolism of these fatty acids in the brain, (14) C-palmitate or (14) C-EPA was administered via intracerebroventricular infusion to rats. From 4 to 128 days post-infusion, brains were collected after head-focused, high-energy microwave irradiation for biochemical analysis. At day 4 post-infusion, 57% (82 ± 26 nCi) of the total phospholipid radioactivity in (14) C-palmitate-infused brains was intact palmitate; whereas in (14) C-EPA-infused brains, 9% (2 ± 0.9 nCi) of the radioactivity was intact EPA. The half-life of esterified (14) C-palmitate and (14) C-EPA was 32 ± 4 (2% loss per day) and 5 ± 0.2 days (14% loss per day), respectively. Radioactivity was also detected in other saturates, monounsaturates, and cholesterol, suggesting that the infused radiolabeled fatty acids were β-oxidized. In conclusion, the low concentration of EPA in brain phospholipids may be the result of extensive metabolism of EPA, in part by β-oxidation, upon entry into the brain and upon de-esterification from phospholipids.  相似文献   

10.
11.
This study was conducted to determine whether provision of preformed dietary docosapentaenoic acid (DPAn-6) can replace docosahexaenoic acid (DHA) for brain function as assessed by spatial task performance. A newly modified artificial rearing method was employed to generate n-3 fatty acid-deficient rats. Newborn pups were separated from their mothers at 2 days of age and given artificial rat milk containing linoleic acid (LA), or LA supplemented with 1% DHA (DHA), 1% DPAn-6 (DPA) or 1% DHA plus 0.4% DPAn-6 (DHA/DPA). The animals were then weaned onto similar pelleted diets. At adulthood, behavioural tasks were administered and then the brains were collected for fatty acid analysis. The LA and DPA groups showed a lower (63-65%) brain DHA than the dam-reared, DHA and DHA/DPA groups and this loss was largely compensated for by an increase in brain DPAn-6. The brain fatty acid composition in the DPA group was the same as that in the LA group at adulthood. In the Morris water maze, the LA and DPA groups exhibited a longer escape latency than the dam-reared and DHA groups and had a defect in spatial retention. In conclusion, DPAn-6 could not replace DHA for brain function, indicating a highly specific structural requirement for DHA.  相似文献   

12.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

13.
Depression may be associated with impaired membrane PUFA composition, especially decreased n-3 PUFA. This assumption has not been tested at the level of brain tissue. Moreover, most studies were confounded by dietary variability. We examined the FA composition of selected brain areas in an animal model of depression, the Flinders Sensitive Line (FSL) rat, and compared the findings with those in controls fed identical diets. In all brain regions studied, the concentration of arachidonic acid (AA) was significantly higher in the FSL rats: in the hypothalamus by 21%, in the nucleus accumbens by 24%, in the prefrontal cortex by 31%, and in the striatum by 23%. No significant differences were observed for n-3 PUFA or for the saturated and monounsaturated FAs. Our results confirm the existence of altered brain PUFA composition in an animal model of depression. The finding of increased AA, an n-6 PUFA, rather than decreased n-3 PUFA, emphasizes the importance of both PUFA families in the pathophysiological processes underlying depression. The FSL rat is a useful tool for further elucidation of the FA disturbances in depression.  相似文献   

14.
The consequences of maternal linolenic acid (LNA, 18:3n-3) dietary deficiency on key dopamine (DA)-associated regulatory proteins in mesolimbic and mesocortical structures of the postnatal rat brain have been investigated. A marked (4.5-fold) decrease of the DA-synthesizing enzyme tyrosine hydroxylase accompanied by a down-regulation (approx 7.5-fold) of the vesicular monoamine transporter (VMAT-2) and a depletion of VMAT-associated vesicles in the hippocampus were observed in deficient offspring compared with adequately fed controls. The DA transporter (DAT) was not affected by the LNA deficiency indicative of a DAT/VMAT-2 ratio increase that may enhance the risk of damage of the dopaminergic (DAergic) terminal. A robust increase in DA receptor (DAR1 and DAR2) levels was noticed in the cortex and striatum structures possibly to compensate for the low levels of DA in synaptic clefts. Microglia activation characterized by enhanced levels of ED1 antibody and nuclear internalization of p65 NFκB was noticed following LNA deficiency. Diminished levels of 22:6n-3 docosahexaenoic acid ( Schiefermeier and Yavin 2002 ), the most ubiquitous metabolite generated by LNA is proposed to reduce the anti-oxidant arsenal in the developing brain and cause microglia activation and enhanced oxidative stress to increase the risk of certain DA-associated neurological disorders.  相似文献   

15.
《Cell metabolism》2021,33(8):1701-1715.e5
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

16.
This study determined the sensitivity of heart and brain arachidonic acid (ARA) and docosahexaenoic acid (DHA) to the dietary ARA level in a dose–response design with constant, high DHA in neonatal piglets. On day 3 of age, pigs were assigned to 1 of 6 dietary formulas varying in ARA/DHA as follows (% fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3–D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. At necropsy (day 28) higher levels of dietary ARA were associated with increased heart and liver ARA, while brain ARA remained unaffected. Dietary ARA had no effect on tissue DHA accretion. Heart was particularly sensitive, with pigs in the intermediate groups having different ARA (A2, 18.6±0.7%; A3, 19.4±1.0%) and a 0.17% increase in dietary ARA resulted in a 0.84% increase in heart ARA. Further investigations are warranted to determine the clinical significance of heart ARA status in developing neonates.  相似文献   

17.
18.
Long-chain polyunsaturated (n-3) fatty acids have been reported to influence the efficiency of membrane receptors, transporters and enzymes. Because the brain is particularly rich in docosahexaenoic acid (DHA, 22:6 n-3), the present study addresses the question of whether the 22:6 n-3 fatty acid deficiency induces disorder in regulation of energy metabolism in the CNS. Three brain regions that share a high rate of energy metabolism were studied: fronto-parietal cortex, hippocampus and suprachiasmatic nucleus. The effect of the diet deficient in n-3 fatty acids resulted in a 30-50% decrease in DHA in membrane phospholipids. Moreover, a 30% decrease in glucose uptake and a 20-40% decrease in cytochrome oxidase activity were observed in the three brain regions. The n-3 deficient diet also altered the immunoreactivity of glucose transporters, namely GLUT1 in endothelial cells and GLUT3 in neurones. In n-3 fatty acid deficient rats, GLUT1-immunoreactivity readily detectable in microvessels became sparse, whereas the number of GLUT3 immunoreactive neurones was increased. However, western blot analysis showed no significant difference in GLUT1 and GLUT3 protein levels between rats deficient in n-3 fatty acids and control rats. The present results suggest that changes in energy metabolism induced by n-3 deficiency could result from functional alteration in glucose transporters.  相似文献   

19.
The use of Delta 6 desaturase (D6D) twice in the conversion of alpha-linolenic acid (ALA; 18:3n-3) to docosahexaenoic acid (DHA; 22:6n-3) suggests that this enzyme may play a key regulatory role in the synthesis and accumulation of DHA from ALA. We examined this using an in vitro model of fatty acid metabolism to measure the accumulation of the long-chain metabolites of ALA in HepG2 cell phospholipids. The accumulation of ALA, eicosapentaenoic acid (20:5n-3), docosapentaenoic acid (22:5n-3), and 24:5n-3 in cell phospholipids was linearly related to the concentration of supplemented ALA over the range tested (1.8-72 microM). The accumulation of the post-D6D products of 22:5n-3, 24:6n-3 and DHA, in cell phospholipids was saturated at concentrations of >18 microM ALA. Supplementation of HepG2 cells with preformed DHA revealed that, although the accumulation of DHA in cell phospholipids approached saturation, the level of DHA in cell phospholipids was significantly greater compared with the accumulation of DHA from ALA, indicating that the accumulation of DHA from ALA was not limited by incorporation. The parallel pattern of accumulation of 24:6n-3 and DHA in response to increasing concentrations of ALA suggests that the competition between 24:5n-3 and ALA for D6D may contribute to the limited accumulation of DHA in cell membranes.  相似文献   

20.
Rats were fed from conception till adulthood either with normal rat chow with a linoleic (LA) to linolenic acid (LNA) ratio of 8.2:1 or a rat chow supplemented with a mixture of perilla and soy bean oil giving a ratio of LA to LNA of 4.7:1. Fat content of the feed was 5%. Fatty acid and molecular species composition of ethanolamine phosphoglyceride was determined. Effect of this diet on gene expression was also studied. There was an accumulation of docosahexaenoic (DHA) and arachidonic acids (AA) in brains of the experimental animals. Changes in the ratio sn-1 saturated, sn-2 docosahexaenoic to sn-1 monounsaturated, sn-2 docosahexaenoic were observed. Twenty genes were found overexpressed in response to the 4.7:1 mixture diet and four were found down-regulated compared to normal rat chow. Among them were the genes related to energy household, lipid metabolism and respiration. The degree of up-regulation exceeded that observed with perilla with a ratio of LA to LNA 8.2:1 [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2619]. It was concluded that brain sensitively reacts to the fatty acid composition of the diet. It was suggested that alteration in membrane architecture and function coupled with alterations in gene expression profiles may contribute to the observed beneficial impact of n-3 type polyunsaturated fatty acids on cognitive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号