首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KU-596 is a second-generation C-terminal heat shock protein 90 KDa (Hsp90) modulator based on the natural product, novobiocin. KU-596 has been shown to induce Hsp70 levels and manifest neuroprotective activity through induction of the heat shock response. A ring-constrained analog of KU-596 was designed and synthesized to probe its binding orientation and ability to induce Hsp70 levels. Compound 2 was found to exhibit comparable or increased activity compared to KU-596, which is under clinical investigation for the treatment of neuropathy.  相似文献   

2.
Heat Shock Protein 90 (Hsp90) is a molecular chaperone under clinical investigation for the treatment of neurodegenerative diseases and cancer. Neuroprotective Hsp90 C-terminal inhibitors (novologues) contain a biaryl ring system, and include KU-596, which was modified and investigated for potential anti-cancer activity. Incorporation of a benzamide group onto the biaryl novologues in lieu of the acetamide yielded compounds that manifest anti-cancer activity. Further exploration of the central phenyl ring led to compounds with enhanced anti-proliferative activity. The design, synthesis, and evaluation of these new analogs against breast and prostate cancer cell lines is reported herein, where it was found that 8b and 10 manifest potent anti-proliferative activity and a robust degradation of Hsp90 client-dependent proteins.  相似文献   

3.
Novobiocin analogs lacking labile glycosidic ether have been designed, synthesized and evaluated for Hsp90 inhibitory activity. Replacement of the synthetically complex noviose sugar with simple aromatic side chains produced analogs that maintain moderate cytotoxic activity against MCF7 and SkBR3 breast cancer cell-lines. Rationale for the preparation of des-noviose novobiocin analogs in addition to their synthesis and biological evaluation are presented herein.  相似文献   

4.
Since Hsp90 modulates all six hallmarks of cancer simultaneously, it has become an attractive target for the development of cancer chemotherapeutics. In an effort to develop more efficacious compounds for Hsp90 inhibition, novobiocin analogues were prepared by replacing the central coumarin core with naphthalene, quinolinone, and quinoline surrogates. These modifications allowed for modification of the 2-position, which was previously unexplored. Biological evaluation of these compounds suggests a hydrophobic pocket about the 2-position of novobiocin. Anti-proliferative activities of these analogues against multiple cancer cell lines identified 2-alkoxyquinoline derivatives to exhibit improved activity.  相似文献   

5.
Hsp90 represents a promising target for the development of both anti-cancer and neuroprotective agents. Structure–activity relationship studies on novobiocin and novobiocin analogues, led to the development of KU-32 and recently, KU-596, as lead compounds for the potential treatment of neurodegenerative diseases. Similar to KU-32, we have demonstrated that upon replacement of the acetamide side chain present in KU-32 with a benzamide, this neuroprotective agent was transformed into a scaffold that manifests anti-proliferative activity. To assess structure–activity relationships for this new scaffold, a library of benzamide-containing novologues was prepared and evaluated against two breast cancer cell lines. Compound 14a manifested the most potent anti-proliferative activity from these studies and induced Hsp90-dependent client protein degradation in a concentration-dependent manner.  相似文献   

6.
分子伴侣热激蛋白90(heat-shock protein 90,Hsp90)在生物体内具有重要的生理功能,它在许多肿瘤细胞中表达增加。临床研究发现Hsp90抑制剂单一用药或者联合用药都具有较好的抗肿瘤效果,因此目前Hsp90被认为是癌症治疗一个非常有潜力的靶标。本文总结了Hsp90的结构功能、Hsp90抑制剂的作用机理以及Hsp90抑制剂的临床应用前景,希望为设计和开发新的Hsp90抑制剂提供一定的参考。  相似文献   

7.
(−)-Epigallocatechin gallate (EGCG) is the major flavonoid of green tea and has been widely explored for a range of biological activities including anti-infective, anti-inflammatory, anti-cancer, and neuroprotection. Existing structure–activity data for EGCG has been largely limited to exploration of simple ethers and hydroxyl deletion. EGCG has poor drug-like properties because of multiple phenolic hydroxyl moieties and a metabolically labile ester. This work reports a substantial expansion of structure–activity understanding by exploring a range of semi-synthetic and synthetic derivatives with ester replacements and variously substituted aromatic and alicyclic groups containing more drug-like substituents. Structure–activity relationships for these molecules were obtained for Hsp90 inhibition. The results indicate that amide and sulfonamide linkers are suitable ester replacements. Hydroxylated aromatic rings and the cis-stereochemistry in EGCG are not essential for Hsp90 inhibition. Selected analogs in this series are more potent than EGCG in a luciferase refolding assay for Hsp90 activity.  相似文献   

8.
《Biomarkers》2013,18(1):31-38
Hsp90 inhibitors are under investigation in multiple human clinical trials for the treatment of cancers, including myeloma, breast cancer, prostate, lung, melanoma, gastrointestinal stromal tumour and acute myeloid leukaemia. The pharmacodynamic activity of Hsp90 inhibitors in the clinic is currently assessed by Hsp70 induction in peripheral blood mononuclear cells using Western blot analysis, a method that is laborious, semiquantitative and difficult to implement in the clinic. Since Hsp70 was reported to be secreted by tumour cells and elevated in sera of cancer patients, serum Hsp70 has been evaluated as a potentially more robust, easily and reproducibly measured biomarker of Hsp90 inhibition as an alternative to cytosolic Hsp70. A highly sensitive and specific electrochemiluminescent ELISA was developed to measure serum Hsp70 and employed to evaluate Hsp70 levels in both ex vivo and xenograft samples. In ex vivo studies, maximal secretion of Hsp70 by tumour cells was observed between 48 and 72?h after exposure to Hsp90 inhibitors. In in vivo studies a 3–4-fold increase in serum Hsp70 was observed following treatment with BIIB021 in tumour-bearing mice. Strikingly, secreted Hsp70 was detectable in mice transplanted with human tumours but not in naive mice indicating a direct origination from the transplanted tumours. Analysis of clinical samples revealed low baseline levels (2–15?ng ml?1) of Hsp70 in the serum of cancer patients and normal donors. Together these findings in laboratory studies and archived cancer patient sera suggest that serum Hsp70 could be a novel biomarker to assess reliably the pharmacological effects of Hsp90 inhibitors in clinical trials, especially under conditions where collection of tumour biopsies is not feasible.  相似文献   

9.
Although Hsp90‐family chaperones have been extensively targeted with ATP‐competitive inhibitors, it is unknown whether high affinity is achieved from a few highly stabilizing contacts or from many weaker contacts within the ATP‐binding pocket. A large‐scale analysis of Hsp90α:inhibitor structures shows that inhibitor hydrogen‐bonding to a conserved aspartate (D93 in Hsp90α) stands out as most universal among Hsp90 inhibitors. Here we show that the D93 region makes a dominant energetic contribution to inhibitor binding for both cytosolic and organelle‐specific Hsp90 paralogs. For inhibitors in the resorcinol family, the D93:inhibitor hydrogen‐bond is pH‐dependent because the associated inhibitor hydroxyl group is titratable, rationalizing a linked‐protonation event previously observed by the Matulis group. The inhibitor hydroxyl group pKa associated with the D93 hydrogen‐bond is therefore critical for optimizing the affinity of resorcinol derivatives, and we demonstrate that spectrophotometric measurements can determine this pKa value. Quantifying the energetic contribution of the D93 hotspot is best achieved with the mitochondrial Hsp90 paralog, yielding 3–6 kcal/mol of stabilization (35–60% of the total binding energy) for a diverse set of inhibitors. The Hsp90 Asp93?Asn substitution has long been known to abolish nucleotide binding, yet puzzlingly, native sequences of structurally similar ATPases, such as Topoisomerasese II, have an asparagine at this same crucial site. While aspartate and asparagine sidechains can both act as hydrogen bond acceptors, we show that a steric clash prevents the Hsp90 Asp93?Asn sidechain from adopting the necessary rotamer, whereas this steric restriction is absent in Topoisomerasese II.  相似文献   

10.
Hsp90 is a molecular chaperone that heals diverse array of biomolecules ranging from multiple oncogenic proteins to the ones responsible for development of resistance to chemotherapeutic agents. Moreover they are over-expressed in cancer cells as a complex with co-chaperones and under-expressed in normal cells as a single free entity. Hence inhibitors of Hsp90 will be more effective and selective in destroying cancer cells with minimum chances of acquiring resistance to them. In continuation of our goal to rationally develop effective small molecule azomethines against Hsp90, we designed few more compounds belonging to the class of 2,4-dihydroxy benzaldehyde derived imines (1–13) with our validated docking protocol. The molecules exhibiting good docking score were synthesized and their structures were confirmed by IR, 1H NMR and mass spectral analysis. Subsequently, they were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The antiproliferative effect of the molecules were examined on PC3 prostate cancer cell lines by adopting 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology. Finally, schiff base 13 emerged as the lead molecule for future design and development of Hsp90 inhibitors as anticancer agents.  相似文献   

11.
热激蛋白Hsp90是一类在进化中形成的高度保守的且可参与多种细胞功能的特异分子伴侣。TPR蛋白通常存在于Hsp90的多蛋白质复合物中,它对Hsp90的功能的多样性起着至关重要的作用,同时Hsp90可能为TPR蛋白提供“泊位”,允许不同的TPR蛋白在Hsp90分子伴侣底物附近有序而特异结合,从而使Hsp90在细胞内环境中以特定的方式完成其各种细胞功能。了解TPR蛋白与Hsp90的相互作用机制为阐明细胞内Hsp90的功能多样性和特异性奠定了基础。  相似文献   

12.
Identification of a ligand binding site represents the starting point for a structure-based drug development program. Lack of a binding site hampers the development of improved ligands that modulate the protein of interest. In this letter, we describe the development of chemical tools that will allow for elucidation of the Hsp90 C-terminal ligand binding site. Our strategy is based on the preparation of paramagnetic analogs of KU-596, an investigational new drug that is currently undergoing clinical trials for the treatment of neuropathy and interacts with the Hsp90 C-terminal domain. In particular, we report the design and synthesis of three novel paramagnetic analogs of KU-596, which will be used to obtain long range distances for NMR structural studies of Hsp90 in complex with C-terminal ligands.  相似文献   

13.
A series of novel and potent small molecule Hsp90 inhibitors was optimized using X-ray crystal structures. These compounds bind in a deep pocket of the Hsp90 enzyme that is partially comprised by residues Asn51 and Ser52. Displacement of several water molecules observed crystallographically in this pocket using rule-based strategies led to significant improvements in inhibitor potency. An optimized inhibitor (compound 17) exhibited potent Hsp90 inhibition in ITC, biochemical, and cell-based assays (Kd = 1.3 nM, Ki = 15 nM, and cellular IC50 = 0.5 μM).  相似文献   

14.
A novel series of macrocyclic ortho-aminobenzamide Hsp90 inhibitors is reported. In continuation of our research in this area, macrocyclic amides and lactams were explored to reduce the risk of hERG liabilities. This effort culminated in the discovery of compound 38, which showed a favorable in vitro profile, and efficiently suppressed proliferation of several relevant cell lines. This compound showed prolonged Hsp90-inhibitory activity at least 24 h post-administration, consistent with elevated and prolonged exposure in the tumor.  相似文献   

15.
Described is the synthesis of three different fluorescein-tagged derivatives of a macrocycle, and their binding affinity to heat shock protein 90 (Hsp90). Using fluorescence polarization anisotropy, we report the binding affinity of these fluorescein-labeled compounds to Hsp90 in its open state and ATP-dependent closed state. We show that the compounds demonstrate a conformation-dependent preference for binding to the closed state.  相似文献   

16.
BIIB021 is a novel, orally available inhibitor of heat shock protein 90 (Hsp90) that is currently in phase I/II clinical trials. BIIB021 induces the apoptosis of various types of tumor cells in vitro and in vivo. The aim of this study is to investigate the effect of BIIB021 on the radiosensitivity of esophageal squamous cell carcinoma (ESCC). The results indicated that BIIB021 exhibited strong antitumor activity in ESCC cell lines, either as a single agent or in combination with radiation. BIIB021 significantly downregulated radioresistant proteins including EGFR, Akt, Raf-1 of ESCC cell lines, increased apoptotic cells and enhanced G2 arrest that is more radiosensitive cell cycle phase. These results suggest that this synthetic Hsp90 inhibitor simultaneously affects multiple pathways involved in tumor development and progression in the ESCC setting and may represent a better strategy for the treatment of ESCC patients, either as a monotherapy or a radiosensitizer.  相似文献   

17.
Heat shock protein 90 (Hsp90) is a molecular chaperone that orchestrates the folding and stability of proteins that regulate cellular signaling, proliferation and inflammation. We have previously shown that Hsp90 controls the production of reactive oxygen species by modulating the activity of Noxes1–3 and 5, but not Nox4. The goal of the current study was to define the regions on Nox5 that bind Hsp90 and determine how Hsp90 regulates enzyme activity. In isolated enzyme activity assays, we found that Hsp90 inhibitors selectively decrease superoxide, but not hydrogen peroxide, production. The addition of Hsp90 alone only modestly increases Nox5 enzyme activity but in combination with the co-chaperones, Hsp70, HOP, Hsp40, and p23 it robustly stimulated superoxide, but not hydrogen peroxide, production. Proximity ligation assays reveal that Nox5 and Hsp90 interact in intact cells. In cell lysates using a co-IP approach, Hsp90 binds to Nox5 but not Nox4, and the degree of binding can be influenced by calcium-dependent stimuli. Inhibition of Hsp90 induced the degradation of full length, catalytically inactive and a C-terminal fragment (aa398–719) of Nox5. In contrast, inhibition of Hsp90 did not affect the expression levels of N-terminal fragments (aa1–550) suggesting that Hsp90 binding maintains the stability of C-terminal regions. In Co-IP assays, Hsp90 was bound only to the C-terminal region of Nox5. Further refinement using deletion analysis revealed that the region between aa490-550 mediates Hsp90 binding. Converse mapping experiments show that the C-terminal region of Nox5 bound to the M domain of Hsp90 (aa310–529). In addition to Hsp90, Nox5 bound other components of the foldosome including co-chaperones Hsp70, HOP, p23 and Hsp40. Silencing of HOP, Hsp40 and p23 reduced Nox5-dependent superoxide. In contrast, increased expression of Hsp70 decreased Nox5 activity whereas a mutant of Hsp70 failed to do so. Inhibition of Hsp90 results in the loss of higher molecular weight complexes of Nox5 and decreased interaction between monomers. Collectively these results show that the C-terminal region of Nox5 binds to the M domain of Hsp90 and that the binding of Hsp90 and select co-chaperones facilitate oligomerization and the efficient production of superoxide.  相似文献   

18.
Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open‐to‐closed‐to‐open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH‐dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation‐specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti‐correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255‐ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255‐ATP salt‐bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH‐dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site‐specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity.  相似文献   

19.
The subject of the present study is the influence of mercury on association of rat liver glucocorticoid receptor (GR) with heat shock proteins Hsp90 and Hsp70. The glucocorticoid receptor heterocomplexes with Hsp90 and Hsp70 were immunopurified from the liver cytosol of rats administered with different doses of mercury. The amounts of co-immunopurified apo-receptor, Hsp90 and Hsp70 were then determined by quantitative Western blotting. The ratio between the amount of heat shock protein Hsp90 or Hsp70 and the amount of apo-receptor within immunopurified heterocomplexes was found to increase in response to mercury administration. On the other hand, the levels of Hsp90 and Hsp70 in hepatic cytosol remained unaltered. The finding that mercury stimulates association of the two heat shock proteins with the glucocorticoid receptor, rendering the cytosolic heat shock protein levels unchanged, suggests that mercury affects the mechanisms controlling the assembly of the receptor heterocomplexes.  相似文献   

20.
Lee CH  Hong HM  Chang YY  Chang WW 《Biochimie》2012,94(6):1382-1389
Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and its expression has been reported to be associated with poor prognosis of breast cancer. Cancer stem cells (CSCs) are particular subtypes of cells in cancer which have been demonstrated to be important to tumor initiation, drug resistance and metastasis. In breast cancer, breast CSCs (BCSCs) are identified as CD24-CD44 + cells or cells with high intracellular aldehyde dehydrogenase activity (ALDH+). Although the clinical trials of Hsp90 inhibitors in breast cancer therapy are ongoing, the BCSC targeting effect of them remains unclear. In the present study, we discovered that the expression of Hsp90α was increased in ALDH + human breast cancer cells. Geldanamycin (GA), a Hsp90 inhibitor, could suppress ALDH + breast cancer cells in a dose dependent manner. We are interesting in the insufficiently inhibitory effect of low dose GA treatment. It was correlated with the upregulation of Hsp27 and Hsp70. By co-treatment with HSP inhibitors, quercetin or KNK437 potentiated BCSCs, which determined with ALDH+ population or mammosphere cells, toward GA inhibition, as well as anti-proliferation and anti-migration effects of GA. With siRNA mediated gene silencing, we found that knockdown of Hsp27 could mimic the effect of HSP inhibitors to potentiate the BCSC targeting effect of GA. In conclusion, combination of HSP inhibitors with Hsp90 inhibitors could serve as a potential solution to prevent the drug resistance and avoid the toxicity of high dose of Hsp90 inhibitors in clinical application. Furthermore, Hsp27 may play a role in chemoresistant character of BCSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号