首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.  相似文献   

2.
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.  相似文献   

3.

Background

Neocortical lesions (NLs) are an important pathological component of multiple sclerosis (MS), but their visualization by magnetic resonance imaging (MRI) remains challenging.

Objectives

We aimed at assessing the sensitivity of multi echo gradient echo (ME-GRE) T2 *-weighted MRI at 7.0 Tesla in depicting NLs compared to myelin and iron staining.

Methods

Samples from two MS patients were imaged post mortem using a whole body 7T MRI scanner with a 24-channel receive-only array. Isotropic 200 micron resolution images with varying T2 * weighting were reconstructed from the ME-GRE data and converted into R2 * maps. Immunohistochemical staining for myelin (proteolipid protein, PLP) and diaminobenzidine-enhanced Turnbull blue staining for iron were performed.

Results

Prospective and retrospective sensitivities of MRI for the detection of NLs were 48% and 67% respectively. We observed MRI maps detecting only a small portion of 20 subpial NLs extending over large cortical areas on PLP stainings. No MRI signal changes suggestive of iron accumulation in NLs were observed. Conversely, R2 * maps indicated iron loss in NLs, which was confirmed by histological quantification.

Conclusions

High-resolution post mortem imaging using R2 * and magnitude maps permits detection of focal NLs. However, disclosing extensive subpial demyelination with MRI remains challenging.  相似文献   

4.
5.
The blood-brain-barrier (BBB) presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE) is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IRE-induced zone of ablation and that this transient response can be measured using gadolinium (Gd) uptake as a surrogate marker for BBB disruption. The study was performed in a Good Laboratory Practices (GLP) compliant facility and had Institutional Animal Care and Use Committee (IACUC) approval. IRE ablations were performed in vivo in normal rat brain (n = 21) with 1-mm electrodes (0.45 mm diameter) separated by an edge-to-edge distance of 4 mm. We used an ECM830 pulse generator to deliver ninety 50-μs pulse treatments (0, 200, 400, 600, 800, and 1000 V/cm) at 1 Hz. The effects of applied electric fields and timing of Gd administration (−5, +5, +15, and +30 min) was assessed by systematically characterizing IRE-induced regions of cell death and BBB disruption with 7.0-T magnetic resonance imaging (MRI) and histopathologic evaluations. Statistical analysis on the effect of applied electric field and Gd timing was conducted via Fit of Least Squares with α = 0.05 and linear regression analysis. The focal nature of IRE treatment was confirmed with 3D MRI reconstructions with linear correlations between volume of ablation and electric field. Our results also demonstrated that IRE is an ablation technique that kills brain tissue in a focal manner depicted by MRI (n = 16) and transiently disrupts the BBB adjacent to the ablated area in a voltage-dependent manner as seen with Evan''s Blue (n = 5) and Gd administration.  相似文献   

6.
PurposeTo report initial experience with TE-averaged susceptibility weighted imaging (SWI) in normal subjects and acute myocardial infarction (AMI) patients for the detection of intramyocardial hemorrhage (IMH).ResultsThere were six patients with microvascular obstruction (MVO) and four patients with IMH detected by TE-averaged SWI imaging. All patients with IMH on SWI scans had MVO on late gadolinium-enhanced (LGE) imaging. There was a three-fold increase in IMH contrast with SWI compared to magnitude images. IMH contrast decreased and signal-to-noise increased with increased TE averages.ConclusionsTE-averaged SWI imaging is a promising method for myocardial tissue characterization in the setting of AMI for the detection of IMH. Along with gray-scale colormap inversion, it combines not only magnitude and phase information, but also images across TEs to provide a single image sensitive to IMH with characteristics similar to LGE imaging.  相似文献   

7.

Introduction

Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey’s head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI.

Methods

The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil.

Results

The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired.

Conclusion

The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.  相似文献   

8.
Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes.  相似文献   

9.

Objectives

To ascertain the prevalence of pancreatic cysts detected incidentally on 3-Tesla magnetic resonance imaging (MRI) of the abdomen and correlate this prevalence with patient age and gender; assess the number, location, and size of these lesions, as well as features suspicious for malignancy; and determine the prevalence of incidentally detected dilatation of the main pancreatic duct (MPD).

Methods

Retrospective analysis of 2,678 reports of patients who underwent abdominal MRI between January 2012 and June 2013. Patients with a known history of pancreatic conditions or surgery were excluded, and the remaining 2,583 reports were examined for the presence of pancreatic cysts, which was then correlated with patient age and gender. We also assessed whether cysts were solitary or multiple, as well as their location within the pancreatic parenchyma, size, and features suspicious for malignancy. Finally, we calculated the prevalence of incidental MPD dilatation, defined as MPD diameter ≥ 2.5 mm.

Results

Pancreatic cysts were detected incidentally in 9.3% of patients (239/2,583). The prevalence of pancreatic cysts increased significantly with age (p<0.0001). There were no significant differences in prevalence between men and women (p=0.588). Most cysts were multiple (57.3%), distributed diffusely throughout the pancreas (41.8%), and 5 mm or larger (81.6%). In 12.1% of cases, cysts exhibited features suspicious for malignancy. Overall, 2.7% of subjects exhibited incidental MPD dilatation.

Conclusions

In this sample, the prevalence of pancreatic cysts detected incidentally on 3T MRI of the abdomen was 9.3%. Prevalence increased with age and was not associated with gender. The majority of cysts were multiple, diffusely distributed through the pancreatic parenchyma, and ≥ 5 mm in size; 12.1% were suspicious for malignancy. An estimated 2.7% of subjects had a dilated MPD.  相似文献   

10.
磁共振成像设备发展趋势   总被引:2,自引:0,他引:2  
本文主要叙述了磁共振设备的原理、构造、产品发展趋势。并对提高磁共振图像分辨的新技术,如Tim全景矩阵成像、自由浪潮技术、高清晰MRI技术和双梯度技术作了综述。  相似文献   

11.

Background and Purpose

Different studies already demonstrated the benefits of 7T for precontrast TOF-MRA in the visualization of intracranial small vessels. The aim of this study was to assess the performance of high-resolution 7T TOF-MRA after the administration of a gadolinium-based contrast agent in visualizing intracranial perforating arteries.

Materials and Methods

Ten consecutive patients (7 male; mean age, 50.4 ± 9.9 years) who received TOF-MRA at 7T after contrast administration were retrospectively included in this study. Intracranial perforating arteries, branching from the parent arteries of the circle of Willis, were identified on all TOF-MRA images. Provided a TOF-MRA before contrast administration was present, a direct comparison between pre- and postcontrast TOF-MRA was made.

Results

It was possible to visualize intracranial perforating arteries branching off from the entire circle of Willis, and their proximal branches. The posterior cerebral artery (P1 and proximal segment of P2) appeared to have the largest number of visible perforating branches (mean of 5.1 in each patient, with a range of 2–7). The basilar artery and middle cerebral artery (M1 and proximal segment M2) followed with a mean number of 5.0 and 3.5 visible perforating branches (range of 1–9 and 1–8, respectively). Venous contamination in the postcontrast scans sometimes made it difficult to discern the arterial or venous nature of a vessel.

Conclusion

High-resolution postcontrast TOF-MRA at 7T was able to visualize multiple intracranial perforators branching off from various parts of the circle of Willis and proximal intracranial arteries. Although confirmation in a larger study is needed, the administration of a contrast agent for high-resolution TOF-MRA at 7T seems to enable a better visualization of the distal segment of certain intracranial perforators.  相似文献   

12.
Magnetic resonance imaging (MRI) provides valuable data for understanding the human mind and brain disorders, but in-scanner head motion introduces systematic and spurious biases. For example, differences in MRI measures (e.g., network strength, white matter integrity) between patient and control groups may be due to the differences in their head motion. To determine whether head motion is an important variable in itself, or just simply a confounding variable, we explored individual differences in psychological traits that may predispose some people to move more than others during an MRI scan. In the first two studies, we demonstrated in both children (N  =  245) and adults (N  =  581) that head motion, estimated from resting-state functional MRI and diffusion tensor imaging, was reliably correlated with impulsivity scores. Further, the difference in head motion between children with attention deficit hyperactivity disorder (ADHD) and typically developing children was largely due to differences in impulsivity. Finally, in the third study, we confirmed the observation that the regression approach, which aims to deal with motion issues by regressing out motion in the group analysis, would underestimate the effect of interest. Taken together, the present findings provide empirical evidence that links in-scanner head motion to psychological traits.  相似文献   

13.
Myocardial tissue characterization using T2 * relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T2 * mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T2 * imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T2 * mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T2 * maps. In vivo studies showed that the peak-to-peak B0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T2 * weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T2 * values were found for anterior (T2 * = 14.0 ms), anteroseptal (T2 * = 17.2 ms) and inferoseptal (T2 * = 16.5 ms) myocardial segments. Shorter T2 * values were observed for inferior (T2 * = 10.6 ms) and inferolateral (T2 * = 11.4 ms) segments. A significant difference (p = 0.002) in T2 * values was observed between end-diastole and end-systole with T2 * changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T2 * mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.  相似文献   

14.

Aims

Cardiovascular magnetic resonance (MR) provides non-invasive assessment of early (24-hour) edema and injury following pulmonary vein isolation (by ablation) and subsequent scar formation. We hypothesize that 24-hours after ablation, cardiovascular MR would demonstrate a pattern of edema and injury due to ablation and the severity would correlate with subsequent scar.

Methods

Fifteen atrial fibrillation patients underwent cardiovascular MR prior to pulmonary vein isolation, 24-hours post (N = 11) and 30-days post (N = 7) ablation, with T2-weighted (T2W) and late gadolinium enhancement (LGE) imaging. Left atrial wall thickness, edema enhancement ratio and LGE enhancement were assessed at each time point. Volumes of LGE and edema enhancement were measured, and the circumferential presence of injury was assessed at 24-hours, including comparison with LGE enhancement at 30 days.

Results

Left atrial wall thickness was increased 24-hours post-ablation (10.7±4.1 mm vs. 7.0±1.8 mm pre-PVI, p<0.05). T2W enhancement at 24-hours showed increased edema enhancement ratio (1.5±0.4 for post-ablation, vs. 0.9±0.2 pre-ablation, p<0.001). Edema and LGE volumes at 24-hours were correlated with 30-day LGE volume (R = 0.76, p = 0.04, and R = 0.74, p = 0.09, respectively). Using a 16 segment model for assessment, 24-hour T2W had sensitivity, specificity, and accuracy of 82%, 63%, and 79% respectively, for predicting 30-day LGE. 24-hour LGE had sensitivity, specificity, and accuracy of 91%, 47%, and 84%.

Conclusions

Increased left atrial wall thickening and edema were characterized on cardiovascular MR early post-ablation, and found to correlate with 30-day LGE scar.  相似文献   

15.
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.  相似文献   

16.

Purpose

To develop a diffusion-tensor-imaging (DTI) protocol that is sensitive to the complex diffusion and perfusion properties of the healthy and malignant pancreas tissues.

Materials and Methods

Twenty-eight healthy volunteers and nine patients with pancreatic-ductal-adenocacinoma (PDAC), were scanned at 3T with T2-weighted and DTI sequences. Healthy volunteers were also scanned with multi-b diffusion-weighted-imaging (DWI), whereas a standard clinical protocol complemented the PDAC patients’ scans. Image processing at pixel resolution yielded parametric maps of three directional diffusion coefficients λ1, λ2, λ3, apparent diffusion coefficient (ADC), and fractional anisotropy (FA), as well as a λ1-vector map, and a main diffusion-direction map.

Results

DTI measurements of healthy pancreatic tissue at b-values 0,500 s/mm2yielded: λ1 = (2.65±0.35)×10−3, λ2 = (1.87±0.22)×10−3, λ3 = (1.20±0.18)×10−3, ADC = (1.91±0.22)×10−3 (all in mm2/s units) and FA = 0.38±0.06. Using b-values of 100,500 s/mm2 led to a significant reduction in λ1, λ2, λ3 and ADC (p<.0001) and a significant increase (p<0.0001) in FA. The reduction in the diffusion coefficients suggested a contribution of a fast intra-voxel-incoherent-motion (IVIM) component at b≤100 s/mm2, which was confirmed by the multi-b DWI results. In PDACs, λ1, λ2, λ3 and ADC in both 0,500 s/mm2 and 100,500 s/mm2 b-values sets, as well as the reduction in these diffusion coefficients between the two sets, were significantly lower in comparison to the distal normal pancreatic tissue, suggesting higher cellularity and diminution of the fast-IVIM component in the cancer tissue.

Conclusion

DTI using two reference b-values 0 and 100 s/mm2 enabled characterization of the water diffusion and anisotropy of the healthy pancreas, taking into account a contribution of IVIM. The reduction in the diffusion coefficients of PDAC, as compared to normal pancreatic tissue, and the smaller change in these coefficients in PDAC when the reference b-value was modified from 0 to 100 s/mm2, helped identifying the presence of malignancy.  相似文献   

17.

Objectives

Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed.

Methods

Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid.

Results

In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded.Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%.

Conclusions

In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.  相似文献   

18.
磁共振成像是诊断早期前列腺癌及评价分期最好的影像学技术之一,然而常规MRI-T2WI在诊断中存在较低的特异性缺陷.随着核磁技术的发展,对前列腺癌的诊断发展到从定性到定量、从形态到功能的变化,本文主要就近年来的磁共振功能成像技术在前列腺癌诊断中的研究进展作一论述.  相似文献   

19.
Magnetic resonance imaging (MRI) is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain. The accuracy and precision of current MR-compatible tracking systems and navigator methods allows the quantification and correction of large-scale motion, but not the correction of very small involuntary movements in six degrees of freedom. In this work, we present an MR-compatible tracking system comprising a single camera and a single 15 mm marker that provides tracking precision in the order of 10 m and 0.01 degrees. We show preliminary results, which indicate that when used for prospective motion correction, the system enables improvement in image quality at both 3 T and 7 T, even in experienced and cooperative subjects trained to remain motionless during imaging. We also report direct observation and quantification of the mechanical ballistocardiogram (BCG) during simultaneous MR imaging. This is particularly apparent in the head-feet direction, with a peak-to-peak displacement of 140 m.  相似文献   

20.
The aim of this study was to successfully establish an orthotopic murine model using two different human pancreatic adenocarcinoma cell lines and to propose a 3.0 tesla MRI protocol for noninvasive characterization of this model. SW1990 and MIAPaca-2 tumor cells were injected into the pancreas of BALB/C nu/nu mice. Tumor growth rate and morphological information were assessed by 3.0 tesla MRI (T1WI, T2WI and DCE-MRI) and immunohistology. Proliferation of SW1990 was significantly faster than that of MIAPaca-2 (P=0.000), but MIAPaca-2 mice had a significantly shorter survival than SW1990 mice (41 days and 44 days respectively, P=0.027). MRI could reliably monitor tumor growth in both cell lines: the tumors exhibiting a spherical growth pattern showed a high-intensity signal, and the SW1990 group developed significantly larger tumors compared with the MIAPaCa-2 group. There were no statistical differences between the two groups in which tumor size was assessed using electronic calipers and an MRI scan (P=0.680). Both tumors showed a slow gradual enhancement pattern. Immunohistochemistry demonstrated tumor tissues showing high expression of Ki-67. This model closely mimics human pancreatic cancer and permits monitoring of tumor growth and morphological information by noninvasive 3.0 tesla MRI studies reducing the number of mice required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号