首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Morusin is a pure compound isolated from root bark of Morusaustralis (Moraceae). In this study, we demonstrated that morusin significantly inhibited the growth and clonogenicity of human colorectal cancer HT-29 cells. Apoptosis induced by morusin was characterized by accumulation of cells at the sub-G1 phase, fragmentation of DNA, and condensation of chromatin. Morusin also inhibited the phosphorylation of IKK-α, IKK-β and IκB-α, increased expression of IκB-α, and suppressed nuclear translocation of NF-κB and its DNA binding activity. Dephosphorylation of NF-κB upstream regulators PI3K, Akt and PDK1 was also displayed. In addition, activation of caspase-8, change of mitochondrial membrane potential, release of cytochrome c and Smac/DIABLO, and activation of caspase-9 and -3 were observed at the early time point. Downregulation in the expression of Ku70 and XIAP was exhibited afterward. Caspase-8 or wide-ranging caspase inhibitor suppressed morusin-induced apoptosis. Therefore, the antitumor mechanism of morusin in HT-29 cells may be via activation of caspases and inhibition of NF-κB.  相似文献   

2.
Liu Y  Luo W 《Molecules and cells》2012,33(5):517-524
Betulinic acid (BetA) is an effective and potential anticancer chemical derived from plants. BetA can kill a broad range of tumor cell lines, but has no effect on untransformed cells. The chemical also kills melanoma, leukemia, lung, colon, breast, prostate and ovarian cancer cells via induction of apoptosis, which depends on caspase activation. However, no reports are yet available about the effects of BetA on nasopharyngeal carcinoma (NPC), a widely spread malignancy in the world, especially in East Asia. In this study, we first showed that BetA can effectively kill CNE2 cells, a cell line derived from NPC. BetA-induced CNE2 apoptosis was characterized by typical apoptosis hallmarks: caspase activation, DNA fragmentation, and cytochrome c release. Overexpression of Bcl-2 and Bcl-xL could partially prevent apoptosis caused by BetA. Moreover, Bax was not activated during the induction of apoptosis. Bax/Bak knockdown and wild-type CNE2 cells showed the same kinetics of cytochrome c release. We then showed that BetA may impair mitochondrial permeability transition pores (mPTPs), which may partially contribute to cytochrome c release. These observations suggest that BetA may serve as a potent and effective anticancer agent in NPC treatment. Further exploration of the mechanism of action of BetA could yield novel breakthroughs in anti-cancer drug discovery.  相似文献   

3.
Hepatocellular carcinoma (HCC) is a high incidence and mortality malignant tumour globally. Betulinic acid (BA) is a pentacyclic triterpenoid with potential pro‐apoptotic activities which widely found in many plants. In this study, we determined the effects of BA on proliferation, apoptosis, invasion, and metastasis in HCC cell lines and on tumour growth and pulmonary metastasis in mice. The results suggested that BA could inhibit cell viability and proliferation of HCC cell lines including HepG2, LM3, and MHCC97H. In addition, BA induced apoptosis of HepG2 cells characterised condensed nuclei and nuclear fragmentation. Moreover, western blot analysis showed that BA‐induced apoptosis associated with increasing of pro‐apoptotic protein Bax and cleaved caspase‐3 and decreasing of anti‐apoptotic protein Bcl‐2. Meanwhile, BA also reduced the reactive oxygen species (ROS) level. Furthermore, BA also significantly inhibited HCC growth in vivo and blocked pulmonary metastasis of HCC by regulating the metastasis‐related proteins including MMP‐2, MMP‐9, and TIMP2 without obvious toxicity. In all, the present study suggested that BA might be a promising anti‐HCC drug candidate by inhibiting proliferation, inducing apoptosis, and blocking metastasis.  相似文献   

4.
Yang HL  Hseu YC  Hseu YT  Lu FJ  Lin E  Lai JS 《Life sciences》2004,75(15):1817-1831
It has been shown that humic acid (HA), a phenolic polymer, exhibits pro-oxidant and cytotoxic effects. In this study, HA induction of apoptosis was studied using cultured human premyelocytic leukemia HL-60 cells. Treatment at a range of HA concentrations (50-400 microg/ml) resulted in dose-and time-dependent sequences of events marked by apoptosis, as demonstrated through by apoptotic features such as loss of cell viability, chromatin condensation, and internucleosomal DNA fragmentation. This HA-induced apoptosis in the HL-60 cells was mainly associated with the release of cytochrome c from the mitochondria. Furthermore, apoptosis in the HL-60 cells was accompanied by the activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), a major component in the apoptotic cell death mechanism. Although the HA-induced apoptosis was associated with Bax protein levels, negligible Bcl-2 reduction was observed. Analysis of the data reported herein reveals that HA exerts antiproliferative action and growth inhibition on HL-60 cells through induction of apoptosis, which may have anticancer properties potentially useful for the development of new drug products.  相似文献   

5.
Deregulated microRNAs and their roles in cancer development have attracted much attention. In the present study, we analyzed the roles of miR-195 in colorectal cancer pathogenesis, as its participation in some other types of cancer has been suggested by previous reports. By comparing miR-195 expression in 81 human colorectal cancer tissues and matched non-neoplastic mucosa tissues, we found that miR-195 was downregulated in cancer tissues. And restoration of miR-195 in colorectal cancer cell lines HT29 and LoVo could reduce cell viability, promote cell apoptosis and suppress tumorigenicity. Moreover, important antiapoptotic Bcl-2 was identified to be directly targeted by miR-195, and miR-195 was further suggested to exert its proapoptotic function mainly through targeting Bcl-2 expression. Taken together, our study provides important roles of miR-195 in colorectal cancer pathogenesis and implicates its potential application in cancer therapy.  相似文献   

6.
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.  相似文献   

7.
目的: 以人胃癌SGC-7901细胞为研究对象,探究桦木酸对其凋亡的影响。方法: 将人胃癌SGC-7901细胞分为4组,每组设置3个复孔,对照组未加入桦木酸,而三组实验组分别加入浓度为10 mg/L、20 mg/L及30 mg/L的桦木酸,将各组细胞放入5%的CO2培养箱中培养48 h,激光共聚焦显微镜观察细胞形态变化;流式细胞术检测细胞凋亡率和线粒体膜电位变化;qRT-PCR和Western blot分别检测SGC-7901细胞凋亡相关基因Bcl-2BaxCaspase-3在mRNA和蛋白水平的表达。结果: 与对照组相比,终浓度为10 mg/L、20 mg/L、30 mg/L的桦木酸处理组,细胞发生皱缩、细胞核裂解并出现凋亡小体;细胞早期凋亡与晚期凋亡率显著增加(P<0.05 or P<0.01),线粒体膜电位明显降低(P<0.05 or P<0.01);细胞凋亡相关基因BaxCaspase-3的mRNA与蛋白表达水平均显著上升(P<0.01),而Bcl-2的mRNA与蛋白表达水平显著降低(P<0.01)。结论: 在一定浓度范围内,桦木酸通过调节凋亡相关基因Bcl-2BaxCaspase-3的表达诱导人胃癌SGC-7901细胞凋亡。  相似文献   

8.
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells.  相似文献   

9.
10.
11.
New semisynthetic derivatives of betulinic acid (BA) RS01, RS02 and RS03 with 18-45 times improved cytotoxic activity against HepG2 cells, were tested for their ability to induce apoptosis and cell cycle arrest in HepG2, HeLa and Jurkat cells. All the compounds induced significant increase in the population at the S phase more effectively than BA. RS01, RS02 and RS03 were also found to be potent inducers of apoptosis with RS01 being markedly more potent than BA, suggesting that the introduction of the imidazolyl moiety is crucial for enhancing the induction of apoptosis and the cell cycle arrest. The mechanism of apoptosis induction has been studied in HepG2 cells and found to be mediated by activation of the postmitochondrial caspases-9 and -3 cascade and possibly by mitochondrial amplification loop involving caspase-8. These facts were corroborated by detection of mitochondrial cytochrome c release and DNA fragmentation. Because RS01, RS02 and RS03 exhibited significant improved antitumor activity with respect to BA, they may be promising new agents for the treatment of cancer. In particular, RS01 is the most promising compound with an IC50 value 45 times lower than BA on HepG2 cells and 61 times lower than the one found for the non-tumoral Chang liver cells.  相似文献   

12.
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.  相似文献   

13.
14.
Many studies have demonstrated that histone deacetylase (HDAC) inhibitors induce various tumor cells to undergo apoptosis, and such inhibitors have been used in different clinical trials against different human cancers. In this study, we designed and synthesized a novel HDAC inhibitor, Chidamide. We showed that Chidamide was able to increase the acetylation levels of histone H3 and to inhibit the PI3K/Akt and MAPK/Ras signaling pathways, which resulted in arresting colon cancer cells at the G1 phase of the cell cycle and promoting apoptosis. As a result, the proliferation of colon cancer cells was suppressed in vitro. Our data support the potential application of Chidamide as an anticancer agent in treating colon cancer. Future studies are needed to demonstrate its in vivo efficacy.  相似文献   

15.
Colorectal carcinoma (CRC) is one of the most common cancers with high metastatic potential, explaining why identifying new drug candidates that inhibit tumour metastasis is an urgent need. The aim of this study was to evaluate the biological activities of pectolinarigenin (PEC, a natural flavonoid present in Cirsium chanroenicum) in CRC in vitro and in vivo and to determine its underlying mechanism of action. Here, we observed that treatment with PEC could inhibit cell viability and induce apoptosis in cancer cells in a concentration- and time-dependent manner. The occurrence of apoptosis was associated with activation of caspase-3 and Bax and decreased expression of Bcl-2. In addition, PEC markedly impaired CRC cell migration and invasion by downregulating the expression of matrix metalloproteinase (MMP-9) and phosphorylated-Stat3Tyr705. Moreover, our studies showed that PEC inhibited abdominal metastasis models of murine colorectal cancer. In addition, histological and immunohistochemical analyses revealed a decrease in Ki67-positive cells, MMP9-positive cells and p-Stat3Tyr705 cells upon treatment with PEC compared to control samples. Furthermore, PEC reduced the number of myeloid-derived suppressor cells (MDSCs) in the blood and tumours, which was accompanied by the increased infiltration of CD8+T cells in the blood. Taken together, our findings suggested that PEC could be used as a natural drug to inhibit CRC metastasis.  相似文献   

16.
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.  相似文献   

17.
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States. Identifying novel chemotherapeutic and chemopreventive approaches is critical in the prevention and treatment of cancers such as pancreatic cancer. Vitamin E succinate (VES) is a redox-silent analog of the fat-soluble vitamin alpha-tocopherol. In the present study, we explored the antiproliferative action of VES and its effects on inhibitor of apoptosis proteins in pancreatic cancer cells. We show that VES inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. Further, we demonstrate that VES downregulates the expression of survivin and X-linked inhibitor of apoptosis proteins. The apoptosis induced by VES was augmented by siRNA-mediated inhibition of survivin in PANC-1 cells. In summary, our results suggest that VES targets survivin signaling and induces apoptosis in pancreatic cancer cells.  相似文献   

18.
Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.  相似文献   

19.
Colorectal cancer (CRC) is one of the most frequent, malignant gastrointestinal tumors, and strategies and effectiveness of current therapy are limited. A series of benzimidazole-isoquinolinone derivatives (BIDs) was synthesized and screened to identify novel scaffolds for CRC. Of the compounds evaluated, 7g exhibited the most promising anti-cancer properties. Employing two CRC cell lines, SW620 and HT29, 7g was found to suppress growth and proliferation of the cell lines at a concentration of ~20?µM. Treatment followed an increase in G2/M cell cycle arrest, which was attributed to cyclin B1 and cyclin-dependent kinase 1 (CDK1) signaling deficiencies with simultaneous enhancement in p21 and p53 activity. In addition, mitochondrial-mediated apoptosis was induced in CRC cells. Interestingly, 7g decreased phosphorylated AKT, mTOR and 4E-BP1 levels, while promoting the expression/stability of PTEN. Since PTEN controls input into the PI3K/AKT/mTOR pathway, antiproliferative effects can be attributed to PTEN-mediated tumor suppression. Collectively, these results suggest that BIDs exert antitumor activity in CRC by impairing PI3K/AKT/mTOR signaling. Against a small kinase panel, 7g exhibited low affinity at 5?µM suggesting anticancer properties likely stem through a non-kinase mechanism. Because of the novelty of BIDs, the structure can serve as a lead scaffold to design new CRC therapies.  相似文献   

20.
Different agents able to modulate apoptosis have been shown to modify the expression of the MAP-kinase-phosphatase-1 (MKP-1). The expression of this phosphatase has been considered a potential positive prognostic factor in lung cancer, and smoke was shown to reduce the levels of MKP-1 in ferret lung. Our aim was to assess whether the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), known to inhibit the growth of several cancer cells mainly inducing apoptosis, may exert pro-apoptotic effect in lung cancer cells by modifying MKP-1 expression. We observed that DHA increased MKP-1 protein and mRNA expression and induced apoptosis in different lung cancer cell lines (mink Mv1Lu adenocarcinoma cells, human A549 adenocarcinoma and human BEN squamous carcinoma cells). We inhibited the pro-apoptotic effect of DHA by treating the cells with the phosphatase inhibitor Na3VO4 or by silencing the MKP-1 gene with the specific siRNA. This finding demonstrated that the induction of apoptosis by DHA involved a phosphatase activity, specifically that of MKP-1. DHA reduced also the levels of the phosphorylated MAP-kinases, especially ERK1/2 and p38. Such an effect was not observed when the MKP-1 gene was silenced. Altogether, the data provide evidence that the DHA-induced overexpression of MKP-1 and the resulting decrease of MAP-kinase phosphorylation by DHA may underlie the pro-apoptotic effect of this fatty acid in lung cancer cells. Moreover, they support the hypothesis that DHA may exert chemopreventive action in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号