首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously developed a telomerase-specific replicating adenovirus expressing GFP (OBP-401), which can selectively label tumors in vivo with GFP. Intraperitoneal (i.p.) injection of OBP-401 specifically labeled peritoneal tumors with GFP, enabling fluorescence visualization of the disseminated disease and real-time fluorescence surgical navigation. However, the technical problems with removing all cancer cells still remain, even with fluorescence-guided surgery. In this study, we report imaging of tumor recurrence after fluorescence-guided surgery of tumors labeled in vivo with the telomerase-dependent, GFP-containing adenovirus OBP-401.. Recurrent tumor nodules brightly expressed GFP, indicating that initial OBP-401-GFP labeling of peritoneal disease was genetically stable, such that proliferating residual cancer cells still express GFP. In situ tumor labeling with a genetic reporter has important advantages over antibody and other non-genetic labeling of tumors, since residual disease remains labeled during recurrence and can be further resected under fluorescence guidance.  相似文献   

2.
We have previously developed a telomerase-specific replicating adenovirus expressing GFP (OBP-401), which can selectively label tumors in vivo with GFP. Intraperitoneal (i.p.) injection of OBP-401 specifically labeled peritoneal tumors with GFP, enabling fluorescence visualization of the disseminated disease and real-time fluorescence surgical navigation. However, the technical problems with removing all cancer cells still remain, even with fluorescence-guided surgery. In this study, we report imaging of tumor recurrence after fluorescence-guided surgery of tumors labeled in vivo with the telomerase-dependent, GFP-containing adenovirus OBP-401.. Recurrent tumor nodules brightly expressed GFP, indicating that initial OBP-401-GFP labeling of peritoneal disease was genetically stable, such that proliferating residual cancer cells still express GFP. In situ tumor labeling with a genetic reporter has important advantages over antibody and other non-genetic labeling of tumors, since residual disease remains labeled during recurrence and can be further resected under fluorescence guidance.Key words: green fluorescent protein, adenovirus, cancer labeling, in situ, fluorescence-guided surgery, recurrence, detection  相似文献   

3.
Near infrared intra-operative optical imaging is an emerging technique with clear implications for improved cancer surgery by enabling a more distinct delineation of the tumor margins during resection. This modality has the potential to increase the number of patients having a curative radical tumor resection. In the present study, a new uPAR-targeted fluorescent probe was developed and the in vivo applicability was evaluated in a human xenograft mouse model. Most human carcinomas express high level of uPAR in the tumor-stromal interface of invasive lesions and uPAR is therefore considered an ideal target for intra-operative imaging. Conjugation of the flourophor indocyanine green (ICG) to the uPAR agonist (AE105) provides an optical imaging ligand with sufficiently high receptor affinity to allow for a specific receptor targeting in vivo. For in vivo testing, human glioblastoma xenograft mice were subjected to optical imaging after i.v. injection of ICG-AE105, which provided an optimal contrast in the time window 6–24 h post injection. Specificity of the uPAR-targeting probe ICG-AE105 was demonstrated in vivo by 1) no uptake of unconjugated ICG after 15 hours, 2) inhibition of ICG-AE105 tumor uptake by a bolus injection of the natural uPAR ligand pro-uPA, and finally 3) the histological colocalization of ICG-AE105 fluorescence and immunohistochemical detected human uPAR on resected tumor slides. Taken together, our data supports the potential use of this probe for intra-operative optical guidance in cancer surgery to ensure complete removal of tumors while preserving adjacent, healthy tissue.  相似文献   

4.
The utility of a two-photon optical fiber fluorescence probe (TPOFF) for sensing and quantifying tumor fluorescent signals was tested in vivo. Xenograft tumors were developed in athymic mice using MCA207 cells expressing green fluorescent protein (GFP). The TPOFF probe was able to detect ex vivo fluorescence from excised tumors containing as little as 0.3% GFP-expressing cells. TPOFF results were similar to both flow-cytometric analysis of tumor cells after isolation and suspension, and fluorescence determined by microscope images of cryosectioned tumors. TPOFF was then used to measure GFP fluorescence from tumors in live mice. The fiber probe detected fluorescently-labeled Herceptin antibody targeted to HER2-expressing tumors in severe combined immunodeficient mice. Dendrimer nanoparticles targeted by folic acid and having 6-TAMRA as a fluorescent probe were also used to label KB cell tumors in vivo. The fiber probe documented a fourfold increase in tumor fluorescence in animals that received the targeted dendrimer. These results suggest TPOFF can be used as a minimally invasive system for identifying tumor markers and monitoring drug therapy.  相似文献   

5.
Highly tumor selective near-infrared (NIR) pH-activatable probe was developed by conjugating pH-sensitive cyanine dye to a cyclic arginine-glycine-aspartic acid (cRGD) peptide targeting α(v)β(3) integrin (ABIR), a protein that is highly overexpressed in endothelial cells during tumor angiogenesis. The NIR pH-sensitive dye used to construct the probe exhibits high spectral sensitivity with pH changes. It has negligible fluorescence above pH 6 but becomes highly fluorescent below pH 5, with a pK(a) of 4.7. This probe is ideal for imaging acidic cell organelles such as tumor lysosomes or late endosomes. Cell microscopy data demonstrate that binding of the cRGD probe to ABIR facilitated the endocytosis-mediated lysosomal accumulation and subsequent fluorescence enhancement of the NIR pH-activatable dye in tumor cells (MDA-MB-435 and 4T1/luc). A similar fluorescence enhancement mechanism was observed in vivo, where the tumors were evident within 4 h post injection. Moreover, lung metastases were also visualized in an orthotopic tumor mouse model using this probe, which was further confirmed by histologic analysis. These results demonstrate the potential of using the new integrin-targeted pH-sensitive probe for the detection of primary and metastatic cancer.  相似文献   

6.
Glutathione (GSH) is a primary intracellular antioxidant. Here, we developed a novel, highly sensitive fluorescent probe for GSH, designated DNs-HMRG, whose fluorescence is regulated by two distinct switching mechanisms, intramolecular spirocyclization and photo-induced electron transfer (PeT). DNs-HMRG showed good cell permeability, and a rapid increase in fluorescence intensity was observed when it was applied to living cells. Further, taking advantage of the fact that the intracellular GSH level in tumor tissue is higher than that in normal tissue, we employed this probe for rapid (within a few tens of seconds) in vivo detection of tiny tumor nodules (less than 1 mm in diameter) in tumor-bearing mice. This probe is expected be a powerful tool in various biological applications, especially studies on redox status.  相似文献   

7.
In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.  相似文献   

8.
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.  相似文献   

9.
Bioluminescence imaging (BLI) has shown its appeal as a sensitive technique for in vivo whole body optical imaging. However, the development of injectable tumor-specific near-infrared fluorescent (NIRF) probes makes fluorescence imaging (FLI) a promising alternative to BLI in situations where BLI cannot be used or is unwanted (e.g., spontaneous transgenic tumor models, or syngeneic mice to study immune effects).In this study, we addressed the questions whether it is possible to detect tumor progression using FLI with appropriate sensitivity and how FLI correlates with BLI measurements. In addition, we explored the possibility to simultaneously detect multiple tumor characteristics by dual-wavelength FLI (~700 and ~800 nm) in combination with spectral unmixing. Using a luciferase-expressing 4T1-luc2 mouse breast cancer model and combinations of activatable and targeting NIRF probes, we showed that the activatable NIRF probes (ProSense680 and MMPSense680) and the targeting NIRF probes (IRDye 800CW 2-DG and IRDye 800CW EGF) were either activated by or bound to 4T1-luc2 cells. In vivo, we implanted 4T1-luc2 cells orthotopically in nude mice and were able to follow tumor progression longitudinally both by BLI and dual-wavelength FLI. We were able to reveal different probe signals within the tumor, which co-localized with immuno-staining. Moreover, we observed a linear correlation between the internal BLI signals and the FLI signals obtained from the NIRF probes. Finally, we could detect pulmonary metastases both by BLI and FLI and confirmed their presence histologically.Taken together, these data suggest that dual-wavelength FLI is a feasible approach to simultaneously detect different features of one tumor and to follow tumor progression with appropriate specificity and sensitivity. This study may open up new perspectives for the detection of tumors and metastases in various experimental models and could also have clinical applications, such as image-guided surgery.  相似文献   

10.
Tetramethylrhodamine (TAMRA)-phenyl azide is a chemical probe used to detect intracellular acrolein directly in live cells. Herein, we demonstrated that TAMRA is the optimum fluorophore for the probe. TAMRA-phenyl azide was used to reveal that high levels of acrolein are generated in a variety of breast cancer cells, regardless of the tumor subtype. These findings corroborate the analysis presented in our previous report, in which TAMRA-phenyl azide was used to label breast cancer tissues resected from breast cancer patients. Because high levels of acrolein were generated in all cancer cell types, we believe that acrolein detection may be useful as a general method for labeling cancerous tissues.  相似文献   

11.
The small-molecule, water-soluble molecular beacon probe 1 is hydrolyzed by the lysate and living cells of human prostate cancer cell lines (LNCaP), resulting in strong green fluorescence. In contrast, probe 1 does not undergo significant hydrolysis in either the lysate or living cells of human nontumorigenic prostate cells (RWPE-1). These results, corroborated by UV-Vis spectroscopy and fluorescent microscopy, reveal that probe 1 is a sensitive and specific fluorogenic and chromogenic sensor for the detection of human prostate cancer cells among nontumorigenic prostate cells and that carboxylesterase activity is a specific biomarker for human prostate cancer cells.  相似文献   

12.
In this article, the characterization of the first near-infrared (NIR) phospholipase-activated molecular beacon is reported, and its utility for in vivo cancer imaging is demonstrated. The probe consists of three elements: a phospholipid (PL) backbone to which the NIR fluorophore, pyropheophorbide a (Pyro), and the NIR Black Hole Quencher 3 (BHQ) were conjugated. Because of the close proximity of BHQ to Pyro, the Pyro-PtdEtn-BHQ probe is self-quenched until enzyme hydrolysis releases the fluorophore. The Pyro-PtdEtn-BHQ probe is highly specific to one isoform of phospholipase C, phosphatidylcholine-specific phospholipase C (PC-PLC), responsible for catabolizing phosphatidylcholine directly to phosphocholine. Incubation of Pyro-PtdEtn-BHQ in vitro with PC-PLC demonstrated a 150-fold increase in fluorescence that could be inhibited by the specific PC-PLC inhibitor tricyclodecan-9-yl xanthogenate (D609) with an IC(50) of 34 ± 8 μM. Since elevations in phosphocholine have been consistently observed by magnetic resonance spectroscopy in a wide array of cancer cells and solid tumors, we assessed the utility of Pyro-PtdEtn-BHQ as a probe for targeted tumor imaging. Injection of Pyro-PtdEtn-BHQ into mice bearing DU145 human prostate tumor xenografts followed by in vivo NIR imaging resulted in a 4-fold increase in tumor radiance over background and a 2 fold increase in the tumor/muscle ratio. Tumor fluorescence enhancement was inhibited with the administration of D609. The ability to image PC-PLC activity in vivo provides a unique and sensitive method of monitoring one of the critical phospholipase signaling pathways activated in cancer, as well as the phospholipase activities that are altered in response to cancer treatment.  相似文献   

13.
A near infrared fluorescence probe, lactose substituted zinc phthalocyanine, [2,9(10),16(17),23(24)-tetrakis((1-(β-d-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxyl)phthalocyaninato] zinc(II), was synthesized via click reaction. Structural characterization and optical experiment demonstrated its excellent biocompatibility and fluorescence imaging ability. Near infrared fluorescence imaging in vivo for liver cancer, lung cancer and melanoma cancer with tumor bearing nude mice as models demonstrated that lactose substituted zinc phthalocyanine has specifically targeting ability to liver cancer while no targeting to lung cancer or melanoma, which implied its potential in liver cancer diagnosis as a near infrared optical probe.  相似文献   

14.
We report here the development of fluorescence-guided surgery of liver metastasis. HT29 human colon cancer cells expressing green fluorescent protein (GFP) were initially injected in the spleen of nude mice. Three weeks later, established liver metastases were harvested and implanted on the left lobe of the liver in other nude mice in order to make an orthotopic liver metastasis model. Fourteen mice with a single liver metastasis were randomized into bright-light surgery (BLS) or fluorescence-guided surgery (FGS) groups. Seven mice were treated with BLS, seven were treated with FGS. Three weeks after implantation, the left lobe of the liver with a single metastasis was exposed through a median abdominal incision. BLS was performed under white light. FGS was performed using a hand-held portable fluorescence imaging system (Dino-Lite). Post-surgical residual tumor fluorescence was visualized with the OV100 Small Animal Imaging System. Residual tumor fluorescence after BLS was clearly visualized at high magnification with the OV100. In contrast, residual tumor fluorescence after FGS was not detected even at high magnification with the OV100. These results demonstrate the feasibility of FGS for liver metastasis.  相似文献   

15.
In cancer surgery, complete surgical resection of tumor lesions is critical to optimize the outcome. However, it is sometimes difficult to distinguish the boundary between tumor and normal tissues, and residual tumor tissue can result in cancer recurrence. Intraoperative imaging with fluorescent molecular probes can assist surgeons to visualize tumor lesions and their boundaries during surgery. Here, we review molecular probes for fluorescence image-guided cancer surgery, focusing especially on recent developments in high-performance tumor-imaging probes and the strategies used for their design.  相似文献   

16.
We report a novel activatable NIR fluorescent probe for in vivo detection of cancer-related matrix metalloproteinase (MMP) activity. The probe is based on a triple-helical peptide substrate (THP) with high specificity for MMP-2 and MMP-9 relative to other members of the MMP family. MMP-2 and MMP-9 (also known as gelatinases) are specifically associated with cancer cell invasion and cancer-related angiogenesis. At the center of each 5 kDa peptide strand is a gelatinase sensitive sequence flanked by 2 Lys residues conjugated with NIR fluorescent dyes. Upon self-assembly of the triple-helical structure, the 3 peptide chains intertwine, bringing the fluorophores into close proximity and reducing fluorescence via quenching. Upon enzymatic cleavage of the triple-helical peptide, 6 labeled peptide chains are released, resulting in an amplified fluorescent signal. The fluorescence yield of the probe increases 3.8-fold upon activation. Kinetic analysis showed a rate of LS276-THP hydrolysis by MMP-2 (k(cat)/K(M) = 30,000 s(-1) M(-1)) similar to that of MMP-2 catalysis of an analogous fluorogenic THP. Administration of LS276-THP to mice bearing a human fibrosarcoma xenografted tumor resulted in a tumor fluorescence signal more than 5-fold greater than that of muscle. This signal enhancement was reduced by treatment with the MMP inhibitor Ilomostat, indicating that the observed tumor fluorescence was indeed enzyme mediated. These results are the first to demonstrate that triple-helical peptides are suitable for highly specific in vivo detection of tumor-related MMP-2 and MMP-9 activity.  相似文献   

17.
Accurate and timely visualization of apoptotic status in response to radiation is necessary for deciding whether to continue radiation or change to another mode of treatment. This is especially critical in patients with colorectal cancer, which requires a delicate combination of surgery, radiation, and chemotherapy in order to achieve optimal outcome. In this study, we investigated the potential of phosphatidylserine-recognizing peptide 1 (PSP1) as an apoptosis-targeting probe, which identifies phosphatidylserine on cell surfaces. We first screened colon cancer cell lines for their sensitivity to radiation and selected two cell lines: HCT116 and HT29. Cell binding assay using fluorescence-activated cell sorting and optical imaging showed that HCT116 cells had better binding to PSP1 than HT29 cells. Thus, mouse xenograft model using HCT116 cells was generated and was topically irradiated with either single or fractionated dose of radiation followed by systemic administration of PSP1 for subsequent molecular optical imaging. We confirmed that the PSP1 probe was selectively bound to apoptosis-induced tumor in a radiation dose-dependent manner. We also observed that fractionated radiation regimen, which is recently being used in clinical situation, was more effective in inducing tumor apoptosis than corresponding single-dose radiation treatment. We then evaluated the correlation between tumor targeting of PSP1 and suppression effect of tumor development and found that tumor volume and fluorescence intensity were correlated before (correlation coefficient r2 = 0.534) and after (r2 = 0.848) radiation therapy. Our study shows that PSP1 peptide is an efficient index probe for deciding “go or no-go” for radiation therapy in colorectal cancer.  相似文献   

18.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.  相似文献   

19.
The plasma fluorescence related to the standard fluorescence of advanced glycation end products (AGEs) is a simple measurable blood parameter for distinct diseases but its importance in human cancer, including non-small cell lung carcinoma (NSCLC), is unknown. Plasma samples of 70 NSCLC patients who underwent resection surgery of the tumor were analyzed for the distinct AGE-related fluorescence at 370 nm excitation/440 nm emission. In a retrospective study, we tested the prognostic relevance of this AGE-related plasma fluorescence. The effect of circulating AGEs on the NSCLC growth was studied experimentally in vitro and in vivo. NSCLC patients with high (> median) AGE-related plasma fluorescence were characterized by a later reoccurrence of the tumor after curative surgery and a higher survival rate compared with patients with low plasma fluorescence (25% versus 47% 5-y survival, P = 0.011). Treating NSCLC cell spheroids with patients' plasma showed an inverse correlation between the growth of spheroids in vitro and the individual AGE-related fluorescence of each plasma sample. To confirm the impact of circulating AGEs on the NSCLC progression, we studied the NSCLC growth in mice whose circulating AGE level was elevated by AGE-rich diet. In vivo tumorigenicity assays demonstrated that mice with higher levels of circulating AGEs developed smaller tumors than mice with normal AGE levels. The AGE-related plasma fluorescence has prognostic relevance for NSCLC patients in whom the tumor growth-inhibiting effect of circulating AGEs might play a critical role.  相似文献   

20.
目的制备抗人大肠癌单克隆抗体ND-1的量子点荧光探针,实现对大肠癌细胞的靶向成像。方法采用共价偶联方法,以1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(EDC)和N-羟基硫代琥珀酰亚胺(NHS)为缩合剂,通过在反应体系中加入不同摩尔比例的单克隆抗体ND-1和游离量子点QD605进行条件优化,制备偶联产物ND-1-QD605荧光探针;利用荧光光谱扫描技术对ND-1-QD605进行光学特性表征,并检测其抗光漂白能力;利用免疫荧光方法检测ND-1-QD605对大肠癌细胞的靶向结合能力。结果在量子点QD605与单克隆抗体ND-1摩尔比1:40条件下,可实现二者的高效偶联;荧光光谱分析显示ND-1-QD605保留了游离量子点QD605优良的荧光特性;在激发光照射1h内,ND-1-QD605荧光强度未发生明显改变;荧光显微镜观察可见该探针能够与表达有相应抗原LEA的人大肠癌CCL187细胞特异性结合,呈现高灵敏度、特异性荧光成像。结论制备的单克隆抗体ND-1的量子点荧光探针具有大肠癌细胞靶向成像能力,有望为大肠癌的体内靶向成像研究和临床诊断提供新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号