首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and SAR studies of a series of structurally novel inhibitors of PDE7 are discussed. The best compounds from the series display low nanomolar inhibitory activity and are selective versus other PDE isoenzymes.  相似文献   

2.
Lipooligosaccharide (LOS) structures in the outer core of Gram-negative mucosal pathogens such as Neisseria meningitidis and Haemophilus influenzae contain characteristic glycoepitopes that contribute significantly to bacterial virulence. An important example is the digalactoside epitope generated by the retaining α-1,4-galactosyltransferase LgtC. These digalactosides camouflage the pathogen from the host immune system and increase its serum resistance. Small molecular inhibitors of LgtC are therefore sought after as chemical tools to study bacterial virulence, and as potential candidates for anti-virulence drug discovery. We have recently discovered a new class of non-substrate-like inhibitors of LgtC. The new inhibitors act via a covalent mode of action, targeting a non-catalytic cysteine residue in the LgtC active site. Here, we describe, for the first time, structure-activity relationships for this new class of glycosyltransferase inhibitors. We have carried out a detailed analysis of the inhibition kinetics to establish the relative contribution of the non-covalent binding and the covalent inactivation steps for overall inhibitory activity. Selected inhibitors were also evaluated against a serum-resistant strain of Haemophilus influenzae, but did not enhance the killing effect of human serum.  相似文献   

3.
LpxC inhibitors are new-type antibacterial agents developed in the last twenty years, mainly against Gram-negative bacteria infections. To develop novel LpxC inhibitors with good antibacterial activities and biological metabolism, we summarized the basic skeleton of reported LpxC inhibitors, designed and synthesized several series of compounds and tested their antibacterial activities against Escherichial coli and Pseudomonas aeruginosa in vitro. Structure-activity relationships have been discussed in this article. The metabolism stability of YDL-2, YDL-5, YDL-8, YDL-14, YDL-20YDL-23 have been evaluated in liver microsomes, which indicated that the 2-amino isopropyl group may be a preferred structure than the 2-hydroxy ethyl group in the design of LpxC inhibitors.  相似文献   

4.
5.
Currently, there is no approved antiviral drug for the infection caused by enteroviruses. A series of novel N-arylethyl isoquinoline derivatives defined with substituents on the ring A and C were designed, synthesized and evaluated in vitro for their activities against Coxsackievirus B3 (CVB3). The primary structure-activity relationship revealed that substituents on the ring A were not beneficial for the activity. Among these analogs synthesized, compound 7f bearing a methylenedioxy at the R(4) and R(5) positions afforded an anti-CVB3 activity and a reasonable selectivity index (SI=26.8); furthermore, 7f exhibited a moderate activity against enterovirus 71 (EV71) with SI value of 9.0. Thus it has been selected as an anti-enteroviral lead compound for further investigation.  相似文献   

6.
As a known natural product with anti-tumor activity, honokiol has been widely researched and structural modified. Lots of honokiol derivatives have been found to possess good anti-proliferative activity and showed great potential in cancer therapy, but the SAR (structure-activity relationship) was still confused. Here in, the SAR were comprehensively researched by summary of reported derivatives and synthesis of novel derivatives. Amongst novel derivatives, the promising compounds A6 and A10 exhibited potent and selective anti-proliferative activities against K562 cell line with the IC50 values of 5.04 and 7.08 μM respectively. The SAR was discussed around honokiol and 79 derivatives by the means of CoMFA and theoretical calculation, which provided useful suggestion for further structural optimization of honokiol derivatives.  相似文献   

7.
In oncology, the “Warburg effect” describes the elevated production of energy by glycolysis in cancer cells. The ubiquitous and hypoxia-induced 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) plays a noteworthy role in the regulation of glycolysis by producing fructose-2,6-biphosphate (F-2,6-BP), a potent activator of the glycolysis rate-limiting phosphofructokinase PFK-1. Series of amides and sulfonamides derivatives based on a N-aryl 6-aminoquinoxaline scaffold were synthesized and tested for their inhibition of PFKFB3 in vitro in a biochemical assay as well as in HCT116 cells. The carboxamide series displayed satisfactory kinetic solubility and metabolic stability, and within this class, potent lead compounds with low nanomolar activity have been identified with a suitable profile for further in vivo evaluation.  相似文献   

8.
The synthesis and structure-activity relationship of a novel series of aminopyrimidines are exemplified. Results of key compounds from within this series in the E-selectin reporter cell assay are also reported.  相似文献   

9.
Sophoridine (1), a natural anticancer drug, has been used in China for decades. A series of novel N-substituted sophoridinic acid derivatives were synthesized and evaluated for their cytotoxicity with 1 as the lead. The structure-activity relationship indicated that introduction of an aliphatic acyl on the nitrogen atom might significantly enhance the anticancer activity. Among the compounds, 6b bearing bromoacetyl side-chain afforded a potential effect against four human tumor cell lines (liver, colon, breast, and lung). The mechanism of action of 6b is to inhibit the activity of DNA topoisomerase I, followed by the S-phase arrest and then cause apoptotic cell death, similar to that of its parent 1. We consider 6b promising for further anticancer investigation.  相似文献   

10.
Structure-activity relationships around a novel series of B-Raf(V600E) inhibitors are reported. The enzymatic and cellular potencies of inhibitors derived from two related hinge-binding groups were compared and3-methoxypyrazolopyridine proved to be superior. The 3-alkoxy group of lead B-Raf(V600E) inhibitor 1 was extended and minimally affected potency. The propyl sulfonamide tail of compound 1, which occupies the small lipophilic pocket formed by an outward shift of the αC-helix, was expanded to a series of arylsulfonamides. X-ray crystallography revealed that this lipophilic pocket unexpectedly enlarges to accommodate the bulkier aryl group.  相似文献   

11.
12.
This paper describes our medicinal chemistry efforts on 7-(cyclopentyloxy)-6-methoxy1,2,3,4-tetrahydroisoquinoline scaffold: design, synthesis and biological evaluation using conformational restriction approach and bioisosteric replacement strategy. Biological data revealed that the majority of the synthesized compounds of this series displayed moderate to potent inhibitory activity against PDE4B and strong inhibition of LPS-induced TNFα release. Among them, compound 19 exhibited the strongest inhibition against PDE4B with an IC50 of 0.88?µM and 21 times more potent selectivity toward PDE4B over PDE4D when compared to rolipram. A primary structure-activity relationship study showed that the attachment of CH3O group or CF3O group to the phenyl ring at the para-position was helpful to enhance the inhibitory activity against PDE4B. Moreover, sulfonamide group played a key role in improving the inhibitory activity against PDE4B and subtype selectivity. In addition, the attachment of the additional rigid substituents at the C-3 position of 1,2,3,4-tetrahydroisoquinoline ring was favored to subtype selectivity, which was consistent well with the observed docking simulation.  相似文献   

13.
Nonpeptidic, selective, and potent cathepsin S inhibitors were derived from an in-house pyrrolopyrimidine cathepsin K inhibitor by modification of the P2 and P3 moieties. The pyrrolopyrimidine-based inhibitors show nanomolar inhibition of cathepsin S with over 100-fold selectivity against other cysteine proteases, including cathepsin K and L. Some of the inhibitors showed cellular activities in mouse splenocytes as well as oral bioavailabilities in rats.  相似文献   

14.
We have synthesized and evaluated a new series of acyclic P4-benzoxaborole-based HCV NS3 protease inhibitors. Structure-activity relationships were investigated, leading to the identification of compounds 5g and 17 with low nanomolar potency in the enzymatic and cell-based replicon assay. The linker-truncated compound 5j was found to exhibit improved absorption and oral bioavailability in rats, suggesting that further reduction of molecular weight and polar surface area could result in improved drug-like properties of this novel series.  相似文献   

15.
Foot-and-mouth disease virus (FMDV) causes a highly infectious and economically devastating disease of livestock. The FMDV genome is translated as a single polypeptide precursor that is cleaved into functional proteins predominantly by the highly conserved viral 3C protease, making this enzyme an attractive target for antiviral drugs. A peptide corresponding to an optimal substrate has been modified at the C-terminus, by the addition of a warhead, to produce irreversible inhibitors that react as Michael acceptors with the enzyme active site. Further investigation highlighted key structural determinants for inhibition, with a positively charged P2 being particularly important for potency.  相似文献   

16.
Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.  相似文献   

17.
Quinazoline was originally utilized as an anti-tumor treatment, and its various derivatives can be directly extracted from plants. In recent years, protein kinases (PK) have been well recognized in the development of tumor drugs. Functionally, PK serves a vital role in the apoptosis, proliferation, differentiation, migration and cell cycle of tumor cells. Due to its good physicochemical properties, quinazoline skeleton, a superior type of PK inhibitor, has been extensively used in anti-tumor drug design. An increasing number of studies on quinazoline synthesis have been reported and used by different groups to effectively develop novel derivatives. Thus, several studies have been approved for the use of quinazoline derivatives as inhibitors of other kinases, including Src and histone deacetylase. The aim of the present review was to summarize the mechanism of quinazoline compounds as PK inhibitors, their biological structure-activity relationship such as the substituted quinazoline compounds with different functional groups in the apoptotic process, and their effect on the proliferation of tumor cells. The development of novel agents based on the antitumor functions of quinazoline molecular compounds may improve the clinical outcomes of the affected population, particularly in patients with cancer.  相似文献   

18.
In this study, we investigated by linear regression model the SAR data of the 15 HIV-1 protease inhibitors possessing structurally diverse scaffolds. First, a regression model was developed only using the enzyme-inhibitor interaction energy as a term of the model, but did not provide a good correlation with the inhibitory activity (R2 = 0.580 and Q2 = 0.500). Then, we focused on the conformational flexibility of the inhibitors which may represent the diversity of the inhibitors, and added two conformational parameters into the model, respectively: the number of rotatable bonds of ligands (ΔSrot) and the distortion energy of ligands (ΔElig). The regression model by adding ΔElig successfully improved the quality of the model (R2 = 0.771 and Q2 = 0.713) while the model with ΔSrot was unsuccessful. The prediction for a training inhibitor by the ΔElig model also showed good agreement with experimental activity. These results suggest that the conformational flexibility of HIV-1 protease inhibitors directly contributes to the enzyme inhibition.  相似文献   

19.
Song J  Kai M  Zhang W  Zhang J  Liu L  Zhang B  Liu X  Wang R 《Peptides》2011,32(9):1934-1941
Transportan 10 (TP10) is an amphipathic cell-penetrating peptide with high translocation ability. In order to obtain more details of structure-activity relationship of TP10, we evaluated the effects of structure and charge on its translocation ability. Our results demonstrated that disrupting the helical structure or Arg substitution could remarkably decrease the cellular uptake of TP10. However, increasing the number of positive charge was an effective strategy to enhance translocation ability of TP10. Furthermore, the molecular dynamics simulation supported the results derived from experiments, suggesting that higher membrane disturbance leads to higher cellular uptake of peptides. In addition, our study also demonstrated TP10 and its analogs preferentially entered cancer cells rather than normal cells. The uptake selectivity toward cancer cells makes TP10 and its analogs as potent CPPs for drug delivery.  相似文献   

20.
A new series of functionalized (Z)-3-(2-oxo-2-substituted ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-ones 2326, incorporating pharmaceutically privileged substructures such as cyclopropyl, naphthyl, biphenyl and cyclohexylphenyl were synthesized in excellent yields. All the synthesized compounds were screened for their in vitro antibacterial activity against gram-(+)ve and gram-(?)ve bacterial species i.e. S. griseus, S. aureus, B. subtillis and E. coli as well as in vitro antifungal activity against fungal species i.e. F. oxysporium, A. niger, P. funiculosum and T. reesei, respectively. In this study, compounds containing cyclopropyl and cyclohexylphenyl substructures were identified as promising antimicrobial agents than standard drugs, ampicillin and chloramphenicol as well as ketoconazole. SAR study illustrates that electron-withdrawing groups increases the antibacterial as well as antifungal activity of 2-oxo-benzo[1,4]oxazines and vice versa. Compounds 23e and 26e, the most active compounds of the series, displayed promising antibacterial activity than Ampicillin and Chloramphenicol. Moreover, compound 26d showed promising antifungal potency as compared to Ketoconazole. Cytotoxic studies of the active compounds i.e. 23ce, 24e, 25d and 26de found to be non-toxic in nature in 3T3 fibroblast cell lines using MTT assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号