首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

2.
Beta human papillomavirus (β-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after DNA replication while NHEJ can occur at any point in the cell cycle. HR and NHEJ are not thought to occur in the same cell at the same time. HR is restricted to cells in phases of the cell cycle where homologous templates are available, while NHEJ occurs primarily during G1. β-HPV type 8 protein E6 (8E6) attenuates both repair pathways. We use a series of immunofluorescence microscopy and flow cytometry experiments to better define the impact of this attenuation. We found that 8E6 causes colocalization of HR factors (RPA70 and RAD51) with an NHEJ factor (activated DNA-PKcs or pDNA-PKcs) at persistent DSBs. 8E6 also causes RAD51 foci to form during G1. The initiation of NHEJ and HR at the same lesion could lead to antagonistic DNA end processing. Further, HR cannot be readily completed in an error-free manner during G1. Both aberrant repair events would cause deletions. To determine if these mutations were occurring, we used next generation sequencing of the 200kb surrounding a CAS9-induced DSB. 8E6 caused a 21-fold increase in deletions. Chemical and genetic inhibition of p300 as well as an 8E6 mutant that is incapable of destabilizing p300 demonstrates that 8E6 is acting via p300 destabilization. More specific chemical inhibitors of DNA repair provided mechanistic insight by mimicking 8E6-induced dysregulation of DNA repair in a virus-free system. Specifically, inhibition of NHEJ causes RAD51 foci to form in G1 and colocalization of RAD51 with pDNA-PKcs.  相似文献   

3.
Ataxia-telangiectasia mutated (ATM) is needed for the initiation of the double-strand break (DSB) repair by homologous recombination (HR). ATM triggers DSB end resection by stimulating the nucleolytic activity of CtIP and MRE11 to generate 3′-ssDNA overhangs, followed by RPA loading and RAD51 nucleofilament formation. Here we show for the first time that ATM is also needed for later steps in HR after RAD51 nucleofilament formation. Inhibition of ATM after completion of end resection did not affect RAD51 nucleofilament formation, but resulted in HR deficiency as evidenced by (i) an increase in the number of residual RAD51/γH2AX foci in both S and G2 cells, (ii) the decrease in HR efficiency as detected by HR repair substrate (pGC), (iii) a reduced SCE rate and (iv) the radiosensitization of cells by PARP inhibition. This newly described role for ATM was found to be dispensable in heterochromatin-associated DSB repair, as KAP1-depletion did not alleviate the HR-deficiency when ATM was inhibited after end resection. Moreover, we demonstrated that ATR can partly compensate for the deficiency in early, but not in later, steps of HR upon ATM inhibition. Taken together, we describe here for the first time that ATM is needed not only for the initiation but also for the completion of HR.  相似文献   

4.
Purpose: Over 90% of pancreatic adenocarcinoma PC express oncogenic mutant KRAS that constitutively activates the Raf-MEK-MAPK pathway conferring resistance to both radiation and chemotherapy. MEK inhibitors have shown promising anti-tumor responses in recent preclinical and clinical studies, and are currently being tested in combination with radiation in clinical trials. Here, we have evaluated the radiosensitizing potential of a novel MEK1/2 inhibitor GSK1120212 (GSK212,or trametinib) and evaluated whether MEK1/2 inhibition alters DNA repair mechanisms in multiple PC cell lines.Methods: Radiosensitization and DNA double-strand break (DSB) repair were evaluated by clonogenic assays, comet assay, nuclear foci formation (γH2AX, DNA-PK, 53BP1, BRCA1, and RAD51), and by functional GFP-reporter assays for homologous recombination (HR) and non-homologous end-joining (NHEJ). Expression and activation of DNA repair proteins were measured by immunoblotting.Results: GSK212 blocked ERK1/2 activity and radiosensitized multiple KRAS mutant PC cell lines. Prolonged pre-treatment with GSK212 for 24-48 hours was required to observe significant radiosensitization. GSK212 treatment resulted in delayed resolution of DNA damage by comet assays and persistent γH2AX nuclear foci. GSK212 treatment also resulted in altered BRCA1, RAD51, DNA-PK, and 53BP1 nuclear foci appearance and resolution after radiation. Using functional reporters, GSK212 caused repression of both HR and NHEJ repair activity. Moreover, GSK212 suppressed the expression and activation of a number of DSB repair pathway intermediates including BRCA1, DNA-PK, RAD51, RRM2, and Chk-1.Conclusion: GSK212 confers radiosensitization to KRAS-driven PC cells by suppressing major DNA-DSB repair pathways. These data provide support for the combination of MEK1/2 inhibition and radiation in the treatment of PC.  相似文献   

5.
The DNA damage response (DDR) is a complex signaling network that leads to damage repair while modulating numerous cellular processes. DNA double-strand breaks (DSBs), a highly cytotoxic DNA lesion, activate this system most vigorously. The DSB response network is orchestrated by the ATM protein kinase, which phosphorylates key players in its various branches. Proteasome-mediated protein degradation plays an important role in the proteome dynamics following DNA damage induction. Here, we identify the nuclear proteasome activator PA28γ (REGγ; PSME3) as a novel DDR player. PA28γ depletion leads to cellular radiomimetic sensitivity and a marked delay in DSB repair. Specifically, PA28γ deficiency abrogates the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair. Furthermore, PA28γ is found to be an ATM target, being recruited to the DNA damage sites and required for rapid accumulation of proteasomes at these sites. Our data reveal a novel ATM-PA28γ-proteasome axis of the DDR that is required for timely coordination of DSB repair.Key words: genomic stability, DNA repair, double-strand breaks, ATM, proteasome, PA28γ (PSME3)  相似文献   

6.
Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure.  相似文献   

7.
The gene mutated in Bloom''s syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquitin-related modifier (SUMO) cause increased γ-H2AX foci. Because the increased γ-H2AX could result from defective repair of spontaneous DNA damage, we hypothesized that SUMO modification regulates BLM''s function in HR repair at damaged forks. To test this hypothesis, we treated cells that stably expressed a normal BLM (BLM+) or a SUMO-mutant BLM (SM-BLM) with hydroxyurea (HU) and examined the effects of stalled replication forks on RAD51 and its DNA repair functions. HU treatment generated excess γ-H2AX in SM-BLM compared to BLM+ cells, consistent with a defect in replication-fork repair. SM-BLM cells accumulated increased numbers of DNA breaks and were hypersensitive to DNA damage. Importantly, HU treatment failed to induce sister-chromatid exchanges in SM-BLM cells compared to BLM+ cells, indicating a specific defect in HR repair and suggesting that RAD51 function could be compromised. Consistent with this hypothesis, RAD51 localization to HU-induced repair foci was impaired in SM-BLM cells. These data suggested that RAD51 might interact noncovalently with SUMO. We found that in vitro RAD51 interacts noncovalently with SUMO and that it interacts more efficiently with SUMO-modified BLM compared to unmodified BLM. These data suggest that SUMOylation controls the switch between BLM''s pro- and anti-recombinogenic roles in HR. In the absence of BLM SUMOylation, BLM perturbs RAD51 localization at damaged replication forks and inhibits fork repair by HR. Conversely, BLM SUMOylation relieves its inhibitory effects on HR, and it promotes RAD51 function.  相似文献   

8.
DNA polymerase (Pol) β null mouse embryonic fibroblasts provide a useful cell system to investigate the effects of alterations in base excision repair (BER) on genome stability. These cells are characterized by hypersensitivity to the cytotoxic effects of methyl methanesulfonate (MMS) and by decreased repair of the MMS-induced DNA single strand breaks (SSB). Here, we show that, in the absence of Pol β, SSB accumulate in G1 phase cells, accompanied by the formation of proliferating cell nuclear antigen foci in the nuclei. When replicating Pol β null cells are treated with MMS, a rapid phosphorylation of histone H2AX is detected in the nuclei of S phase cells, indicating that double strand breaks (DSB) are formed in response to unrepaired SSB. This is followed by relocalization within the nuclei of Rad51 protein, which is essential for homologous recombination (HR). These findings are compatible with a model where, in mammalian cells, unrepaired SSB produced during BER are substrates for the HR pathway via DSB formation. This is an example of a coordinated effort of two different repair pathways, BER and HR, to protect mammalian cells from alkylation-induced cytotoxicity.  相似文献   

9.
Homologous recombination (HR) serves multiple roles in DNA repair that are essential for maintaining genomic stability, including double-strand DNA break (DSB) repair. The central HR protein, RAD51, is frequently overexpressed in human malignancies, thereby elevating HR proficiency and promoting resistance to DNA-damaging therapies. Here, we find that the non-canonical NF-κB factors p100/52, but not RelB, control the expression of RAD51 in various human cancer subtypes. While p100/p52 depletion inhibits HR function in human tumor cells, it does not significantly influence the proficiency of non-homologous end joining, the other key mechanism of DSB repair. Clonogenic survival assays were performed using a pair DLD-1 cell lines that differ only in their expression of the key HR protein BRCA2. Targeted silencing of p100/p52 sensitizes the HR-competent cells to camptothecin, while sensitization is absent in HR-deficient control cells. These results suggest that p100/p52-dependent signaling specifically controls HR activity in cancer cells. Since non-canonical NF-κB signaling is known to be activated after various forms of genomic crisis, compensatory HR upregulation may represent a natural consequence of DNA damage. We propose that p100/p52-dependent signaling represents a promising oncologic target in combination with DNA-damaging treatments.  相似文献   

10.
Topoisomerase IIβ-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase–mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1’s role in HR, with potential clinical implications for cancer treatment.  相似文献   

11.
Recruitment of RAD18 to stalled replication forks facilitates monoubiquitination of PCNA during S-phase, promoting translesion synthesis at sites of UV irradiation-induced DNA damage. In this study, we show that RAD18 is also recruited to ionizing radiation (IR)-induced sites of DNA double-strand breaks (DSBs) forming foci which are co-localized with 53BP1, NBS1, phosphorylated ATM, BRCA1 and γ-H2AX. RAD18 associates with 53BP1 and is recruited to DSB sites in a 53BP1-dependent manner specifically during G1-phase, RAD18 monoubiquitinates KBD domain of 53BP1 at lysine 1268 in vitro. A monoubiquitination-resistant 53BP1 mutant harboring a substitution at lysine 1268 is not retained efficiently at the chromatin in the vicinity of DSBs. In Rad18-null cells, retention of 53BP1 foci, efficiency of DSB repair and post-irradiation viability are impaired compared with wild-type cells. Taken together, these results suggest that RAD18 promotes 53BP1-directed DSB repair by enhancing retention of 53BP1, possibly through an interaction between RAD18 and 53BP1 and the modification of 53BP1.  相似文献   

12.
H2AX is an important factor for chromatin remodeling to facilitate accumulation of DNA damage-related proteins at DNA double-strand break (DSB) sites. In order to further understand the role of H2AX in the DNA damage response (DDR), we attempted to identify H2AX-interacting proteins by proteomics analysis. As a result, we identified nucleolin as one of candidates. Here, we show a novel role of a major nucleolar protein, nucleolin, in DDR. Nucleolin interacted with γ-H2AX and accumulated to laser micro-irradiated DSB damage sites. Chromatin Immunoprecipitation assay also displayed the accumulation of nucleolin around DSB sites. Nucleolin-depleted cells exhibited repression of both ATM-dependent phosphorylation following exposure to γ-ray and subsequent cell cycle checkpoint activation. Furthermore, nucleolin-knockdown reduced HR and NHEJ activity and showed decrease in IR-induced chromatin accumulation of HR/NHEJ factors, agreeing with the delayed kinetics of γ-H2AX focus. Moreover, nucleolin-knockdown decreased MDC1-related events such as focus formation of 53 BP1, RNF168, phosphorylated ATM, and H2A ubiquitination. Nucleolin also showed FACT-like activity for DSB damage-induced histone eviction from chromatin. Taken together, nucleolin could promote both ATM-dependent cell cycle checkpoint and DSB repair by functioning in an MDC1-related pathway through its FACT-like function.  相似文献   

13.
Double-strand breaks (DSB) occur in chromatin following replication fork collapse and chemical or physical damage [Symington and Gautier (Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247–271.)] and may be repaired by homologous recombination (HR) and non-homologous end-joining. Nucleosomes are the fundamental units of chromatin and must be remodeled during DSB repair by HR [Andrews and Luger (Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 2011;40:99–117.)]. Physical initiation of HR requires RAD51, which forms a nucleoprotein filament (NPF) that catalyzes homologous pairing and strand exchange (recombinase) between DNAs that ultimately bridges the DSB gap [San Filippo, Sung and Klein. (Mechanism of eukaryotic HR. Annu. Rev. Biochem. 2008;77:229–257.)]. RAD51 forms an NPF on single-stranded DNA and double-stranded DNA (dsDNA). Although the single-stranded DNA NPF is essential for recombinase initiation, the role of the dsDNA NPF is less clear. Here, we demonstrate that the human RAD51 (HsRAD51) dsDNA NPF disassembles nucleosomes by unwrapping the DNA from the core histones. HsRAD51 that has been constitutively or biochemically activated for recombinase functions displays significantly reduced nucleosome disassembly activity. These results suggest that HsRAD51 can perform ATP hydrolysis-dependent nucleosome disassembly in addition to its recombinase functions.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the Rad1–Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1–Rad10 endonuclease cleaves 3′ branches of DNA and aberrant 3′ DNA ends that are refractory to other 3′ processing enzymes. Here we show that yeast strains expressing fluorescently labeled Rad10 protein (Rad10-YFP) form foci in response to double-strand breaks (DSBs) induced by a site-specific restriction enzyme, I-SceI or by ionizing radiation (IR). Additionally, for endonuclease-induced DSBs, Rad10-YFP localization to DSB sites depends on both RAD51 and RAD52, but not MRE11 while IR-induced breaks do not require RAD51. Finally, Rad10-YFP colocalizes with Rad51-CFP and with Rad52-CFP at DSB sites, indicating a temporal overlap of Rad52, Rad51 and Rad10 functions at DSBs. These observations are consistent with a putative role of Rad10 protein in excising overhanging DNA ends after homology searching and refine the potential role(s) of the Rad1–Rad10 complex in DSB repair in yeast.  相似文献   

15.
RECQ5 DNA helicase suppresses homologous recombination (HR) possibly through disruption of RAD51 filaments. Here, we show that RECQ5 is constitutively associated with the MRE11–RAD50–NBS1 (MRN) complex, a primary sensor of DNA double-strand breaks (DSBs) that promotes DSB repair and regulates DNA damage signaling via activation of the ATM kinase. Experiments with purified proteins indicated that RECQ5 interacts with the MRN complex through both MRE11 and NBS1. Functional assays revealed that RECQ5 specifically inhibited the 3′→5′ exonuclease activity of MRE11, while MRN had no effect on the helicase activity of RECQ5. At the cellular level, we observed that the MRN complex was required for the recruitment of RECQ5 to sites of DNA damage. Accumulation of RECQ5 at DSBs was neither dependent on MDC1 that mediates binding of MRN to DSB-flanking chromatin nor on CtIP that acts in conjunction with MRN to promote resection of DSBs for repair by HR. Collectively, these data suggest that the MRN complex recruits RECQ5 to sites of DNA damage to regulate DNA repair.  相似文献   

16.
Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.Oxidative DNA damage is generated at high levels in mammalian cells, even in cells not exposed to exogenous sources of reactive oxygen species. Several kinds of DNA modifications are formed upon oxidative stress (8). The most prevalent modifications, quantitatively, are single-strand breaks and oxidized bases. Clustered DNA damage, when two or more modifications are closely positioned in opposite strands, is detectable after gamma irradiation and has recently been shown to be generated by normal oxidative metabolism (3, 35). One unique aspect of such clustered lesions is that they can be converted into double-strand breaks (DSB) if a DNA glycosylase removes the two opposite bases and an apurinic/apyrimidinic (AP)-endonuclease cleaves the resulting abasic sites. Thus, although quantitatively minor, DSB are possible outcomes of oxidative DNA damage.Oxidized DNA bases are repaired primarily by the base excision repair pathway (BER) (22, 39). BER is initiated by a lesion-specific DNA N-glycosylase that recognizes and excises the damaged base. Eight-hydroxyguanine (8-oxoG) is one of the most abundant oxidized bases detected in cellular DNA. This adduct is easily bypassed by replicative polymerases; however, it can direct the misincorporation of adenine opposite 8-oxoG, thus leading to G·C-to-T·A transversion mutations (31). 8-oxoG accumulation has been causally associated with carcinogenesis and aging in several experimental models (1, 12). In eukaryotes, oxoguanine DNA glycosylase (OGG1) is the major 8-oxoG DNA glycosylase. OGG1 possesses an associated AP-lyase activity, such that it removes 8-oxoG and cleaves the DNA backbone. Human cells express two distinct OGG1 isoforms, α and β, which share the first 316 amino acids but differ significantly in their C termini (25). While OGG1-α is a bone fide DNA glycosylase (5) and localizes both to nuclei and mitochondria, OGG1-β localizes exclusively to mitochondria. We recently showed that the recombinant OGG1-β protein has no DNA glycosylase activity (13). The high degree of conservation of repair pathways for 8-oxoG, from bacteria to humans, along with epidemiological data correlating OGG1 polymorphisms and activity with predisposition to some cancers (11, 27, 33) attest to the biological importance of the repair of 8-oxoGs and other oxidative DNA lesions.Until recently, distinct classes of DNA lesions were believed to be metabolized by different and independent repair pathways. However, experimental evidence indicates that these pathways can interact and that there is a considerable degree of overlap in their substrate specificity and in the proteins that participate in each pathway. Experiments using yeast strains lacking one or more distinct DNA repair genes suggest that DSB repair pathways may play a role in repair of oxidative DNA damage. Swanson et al. showed that while yeast cells lacking ntg1 and ntg2 (homologues of Escherichia coli endonuclease III, a DNA glycosylase specific for pyrimidine lesions formed by oxidation) and apn1 (the major yeast abasic site endonuclease) are not overtly sensitive to oxidative stress, the additional disruption of the rad52 gene significantly increases sensitivity to H2O2 and menadione (36). Similarly, yeast cells expressing decreased levels of frataxin, which leads to elevated oxidative stress, show accumulation of oxidative damage in nuclear DNA only in a rad52 mutant background (18). RAD52 is a member of the RAD51 epistatic group. These proteins are believed to be involved in the early steps of homologous recombination, contributing to homology search and strand invasion; disruption of the corresponding genes renders cells deficient in DSB repair and hyper-recombinogenic (19).These results suggested a possible role for RAD52 in the repair of oxidative DNA damage. Moreover, an in vitro screening of protein partners that interact physically with OGG1-β performed in our lab (unpublished data) showed that human RAD52 strongly interacted with this glycosylase, again suggesting a possible function for RAD52 in the oxidative DNA damage response. Thus, we investigated whether RAD52 plays a role in the repair of oxidative DNA damage in human cells. We show here that human RAD52 physically interacts with both OGG1-α and -β, in vitro and in cell extracts. We also show that OGG1-α and -β inhibit RAD52 enzymatic activities. Conversely, RAD52 stimulates OGG1-α 8-oxoG incision activity. RAD52 colocalizes with OGG1-α in cells, and this colocalization increases after oxidative stress. Moreover, lower RAD52 expression, via gene knockdown (KD) or disruption of the RAD52 gene, render cells sensitive to oxidative stress. Based on our results, we discuss a model in which OGG1 and RAD52 cooperate to repair 8-oxoG lesions.  相似文献   

17.
G. T. Milne  T. Ho    D. T. Weaver 《Genetics》1995,139(3):1189-1199
RAD52 function is required for virtually all DNA double-strand break repair and recombination events in Saccharomyces cerevisiae. To gain greater insight into the mechanism of RAD52-mediated repair, we screened for genes that suppress partially active alleles of RAD52 when mutant or overexpressed. Described here is the isolation of a phenotypic null allele of SRS2 that suppressed multiple alleles of RAD52 (rad52B, rad52D, rad52-1 and KlRAD52) and RAD51 (KlRAD51) but failed to suppress either a rad52δ or a rad51δ. These results indicate that SRS2 antagonizes RAD51 and RAD52 function in recombinational repair. The mechanism of suppression of RAD52 alleles by srs2 is distinct from that which has been previously described for RAD51 overexpression, as both conditions were shown to act additively with respect to the rad52B allele. Furthermore, overexpression of either RAD52 or RAD51 enhanced the recombination-dependent sensitivity of an srs2δ RAD52 strain, suggesting that RAD52 and RAD51 positively influence recombinational repair mechanisms. Thus, RAD52-dependent recombinational repair is controlled both negatively and positively.  相似文献   

18.
Unlike other Rho GTPases, RhoB is rapidly induced by DNA damage, and its expression level decreases during cancer progression. Because inefficient repair of DNA double-strand breaks (DSBs) can lead to cancer, we investigated whether camptothecin, an anticancer drug that produces DSBs, induces RhoB expression and examined its role in the camptothecin-induced DNA damage response. We show that in camptothecin-treated cells, DSBs induce RhoB expression by a mechanism that depends notably on Chk2 and its substrate HuR, which binds to RhoB mRNA and protects it against degradation. RhoB-deficient cells fail to dephosphorylate γH2AX following camptothecin removal and show reduced efficiency of DSB repair by homologous recombination. These cells also show decreased activity of protein phosphatase 2A (PP2A), a phosphatase for γH2AX and other DNA damage and repair proteins. Thus, we propose that DSBs activate a Chk2-HuR-RhoB pathway that promotes PP2A-mediated dephosphorylation of γH2AX and DSB repair. Finally, we show that RhoB-deficient cells accumulate endogenous γH2AX and chromosomal abnormalities, suggesting that RhoB loss increases DSB-mediated genomic instability and tumor progression.  相似文献   

19.
20.
During the DNA damage response (DDR), ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5), a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB) repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号