首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel series of indazole/indole derivatives were discovered as glucagon receptor (GCGR) antagonists through scaffold hopping based on two literature leads: MK-0893 and LY-2409021. Further structure-activity relationship (SAR) exploration and optimization led to the discovery of multiple potent GCGR antagonists with excellent pharmacokinetic properties in mice and rats, including low systemic clearance, long elimination half-life, and good oral bioavailability. These potent GCGR antagonists could be used for potential treatment of type II diabetes.  相似文献   

2.
A novel and potent small molecule glucagon receptor antagonist for the treatment of diabetes mellitus is reported. This candidate, (S)-3-[4-(1-{3,5-dimethyl-4-[4-(trifluoromethyl)-1H-pyrazol-1-yl]phenoxy}butyl)benzamido]propanoic acid, has lower molecular weight and lipophilicity than historical glucagon receptor antagonists, resulting in excellent selectivity in broad-panel screening, lower cytotoxicity, and excellent overall in vivo safety in early pre-clinical testing. Additionally, it displays low in vivo clearance and excellent oral bioavailability in both rats and dogs. In a rat glucagon challenge model, it was shown to reduce the glucagon-elicited glucose excursion in a dose-dependent manner and at a concentration consistent with its rat in vitro potency. Its properties make it an excellent candidate for further investigation.  相似文献   

3.
Furan-2-carbohydrazides were found as orally active glucagon receptor antagonists. Starting from the hit compound 5, we successfully determined the structure activity relationships of a series of derivatives obtained by modifying the acidity of the phenol. We identified the ortho-nitrophenol as a good scaffold for glucagon receptor inhibitory activity. Our efforts have led to the discovery of compound 7l as a potent glucagon receptor antagonist with good bioavailability and satisfactory long half-life.  相似文献   

4.
A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.  相似文献   

5.
In the course of the development of an aminobenzimidazole class of human glucagon receptor (hGCGR) antagonists, a novel class of cyclic guanidine hGCGR antagonists was discovered. Rapid N-dealkylation resulted in poor pharmacokinetic profiles for the benchmark compound in this series. A strategy aimed at blocking oxidative dealkylation led to a series of compounds with improved rodent pharmacokinetic profiles. One compound was orally efficacious in a murine glucagon challenge pharmacodynamic model and also significantly lowered glucose levels in a murine diabetes model.  相似文献   

6.
A novel class of N-aryl-2-acylindole human glucagon receptor (hGCGR) antagonists is reported. These compounds demonstrate good pharmacokinetic profiles in multiple preclinical species. One compound from this series, indole 33, is orally active in a transgenic murine pharmacodynamic model. Furthermore, a 1mg/kg oral dose of indole 33 lowers ambient glucose levels in an ob/ob/hGCGR transgenic murine diabetes model. This compound was deemed suitable for preclinical safety studies and was found to be well tolerated in an 8-day experimental rodent tolerability study. The combination of preclinical efficacy and safety observed with compound 33 highlights the potential of this class as a treatment for type 2 diabetes.  相似文献   

7.
Identification of orally active, small molecule antagonists of the glucagon receptor represents a novel treatment paradigm for the management of type 2 diabetes mellitus. The present work discloses novel glucagon receptor antagonists, identified via conformational constraint of current existing literature antagonists. Optimization of lipophilic ligand efficiency (LLE or LipE) culminated in enantiomers (+)-trans-26 and (−)-trans-27 which exhibit good physicochemical and in vitro drug metabolism profiles. In vivo, significant pharmacokinetic differences were noted with the two enantiomers, which were primarily driven through differences in clearance rates. Enantioselective oxidation by cytochrome P450 was ruled out as a causative factor for pharmacokinetic differences.  相似文献   

8.
The discovery and optimization of potent and selective aminobenzimidazole glucagon receptor antagonists are described. One compound possessing moderate pharmacokinetic properties in multiple preclinical species was orally efficacious at inhibiting glucagon-mediated glucose excursion in transgenic mice expressing the human glucagon receptor, and in rhesus monkeys. The compound also significantly lowered glucose levels in a murine model of diabetes.  相似文献   

9.
A series of 3-substituted N,N'-diarylureas was prepared and the structure-activity relationship relative to CXCR2 receptor affinity as well as their pharmacokinetic properties were examined. In vitro microsomal metabolism studies indicated that the lower clearance rates of the 3-sulfonamido-substituted compounds were most likely due to the suppression of glucuronidation.  相似文献   

10.
The hormone glucagon increases blood glucose levels through increasing hepatic glucose output. In diabetic patients, dysregulation of glucagon secretion contributes to hyperglycemia. Thus, the inhibition of glucagon receptor is one target for the treatment of hyperglycemia in type 2 diabetes. Here we designed and synthesized a series of small molecules based on phenylpyrimidine. Of these, the compound (R)-7a most significantly decreased the glucagon-induced cAMP production and glucagon-induced glucose production during in vitro and in vivo assays. In addition, (R)-7a showed good efficacy in glucagon challenge tests and lowered blood glucose levels in diabetic db/db mice. Our results suggest that the compound (R)-7a could be a potential glucose-lowering agent for treating type 2 diabetes.  相似文献   

11.
Novel 3-(1H-indol-3-yl)-1,2,4-oxadiazoles and -thiadiazoles were synthesized and found to be potent CB1 cannabinoid receptor agonists. The oral bioavailability of these compounds could be dramatically improved by optimization studies of the side chains attached to the indole and oxadiazole cores, leading to identification of a CB1 receptor agonist with good oral activity in a range of preclinical models of antinociception and antihyperalgesia.  相似文献   

12.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
The free fatty acid receptor 1 (FFA1) has gained significant interest as a novel antidiabetic target. Most of FFA1 agonists reported in the literature bearing a common biphenyl scaffold, which was crucial for toxicity verified by the researchers of Daiichi Sankyo. Herein, we describe the systematic exploration of non-biphenyl scaffold and further chemical modification of the optimal pyrrole scaffold. All of these efforts led to the identification of compound 11 as a potent and orally bioavailable FFA1 agonist without the risk of hypoglycemia. Further molecular modeling studies promoted the understanding of ligand-binding pocket and might help to design more promising FFA1 agonists.  相似文献   

13.
Novel oxazolidinedione analogs were discovered as potent and selective mineralocorticoid receptor (MR) antagonists. Structure–activity relationship (SAR) studies were focused on improving the potency and microsomal stability. Selected compounds demonstrated excellent MR activity, reasonable nuclear hormone receptor selectivity, and acceptable rat pharmacokinetics.  相似文献   

14.
We describe novel alkylsulfones as potent CCR2 antagonists with reduced hERG channel activity and improved pharmacokinetics over our previously described antagonists. Several of these new alkylsulfones have a profile that includes functional antagonism of CCR2, in vitro microsomal stability, and oral bioavailability. With this improved profile, we demonstrate that two of these antagonists, 2 and 12, are orally efficacious in an animal model of inflammatory recruitment.  相似文献   

15.
A novel class of spiro-ureas has been discovered as potent human glucagon receptor antagonists in both binding and functional assays. Preliminary studies have revealed that compound 15 is an orally active human glucagon receptor antagonist in a transgenic murine pharmacodynamic model at 10 and 30 mpk. Compound 15 is orally bioavailable in several preclinical species and shows selectivity toward cardiac ion channels and other family B receptors, such as hGIP1 and hGLP.  相似文献   

16.
Structural modification of a 1,4-benzodiazepin-2-one-based PTHR1 antagonist 5, a novel type of PTHR1 antagonist previously synthesized in our laboratories, yielded compound 10, which had better chemical stability than compound 5. Successive optimization of the lead 10 improved aqueous solubility, metabolic stability, and animal pharmacokinetics, culminating in the identification of DS37571084 (12). Our study paves the way for the discovery of novel and orally bioavailable PTHR1 antagonists.  相似文献   

17.
A series of 1-substituted 3-(t-butyl/trifluoromethyl)pyrazole C-region analogues of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The structure activity relationship indicated that the 3-chlorophenyl group at the 1-position of pyrazole was the optimized hydrophobic group for antagonistic potency and the activity was stereospecific to the S-configuration, providing exceptionally potent antagonists 13S and 16S with Ki(CAP) = 0.1 nM. Particularly significant, 13S exhibited antagonism selective for capsaicin and NADA and not for low pH or elevated temperature. Both compounds also proved to be very potent antagonists for rTRPV1, blocking in vivo the hypothermic action of capsaicin, consistent with their in vitro mechanism. The docking study of compounds 13S and 16S in our hTRPV1 homology model indicated that the binding modes differed somewhat, with that of 13S more closely resembling that of GRT12360.  相似文献   

18.
A hit-to-lead optimisation programme was carried out on the Novartis archive screening hit, pyrazolopyrimidine 2-methyl-5-((phenylthio)methyl)pyrazolo[1,5-a]pyrimidin-7-ol 1, resulting in the discovery of CXCR2 receptor antagonist 2-benzyl-5-(((2,3-difluorophenyl)thio)methyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol 14. The SAR was investigated by systematic variation of the pendant thiol, alkyl and pyrimidinol groups. Replacement of the pyrazolopyrimidine core with a triazolo alternative led to a dual series of antagonists with favourable biological and pharmacokinetic properties.  相似文献   

19.
2-Phenyl-pyrimidine-4-carboxamide analogs were identified as P2Y12 antagonists. Optimization of the carbon-linked or nitrogen-linked substituent at the 6-position of the pyrimidine ring provided compounds with excellent ex vivo potency in the platelet aggregation assay in human plasma. Compound 23u met the objectives for activity, selectivity and ADMET properties.  相似文献   

20.
A rapid analogue approach to identification of spirohydantoin-based CGRP antagonists provided novel, low molecular weight leads. Modification of these leads afforded a series of nanomolar benzimidazolinone-based CGRP receptor antagonists. The oral bioavailability of these antagonists was inversely correlated with polar surface area, suggesting that membrane permeability was a key limitation to absorption. Optimization provided compound 12, a potent CGRP receptor antagonist (Ki = 21 nM) with good oral bioavailability in three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号