首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of 2(1H)-pyrimidinone derivatives was identified as potential EGFR T790M inhibitors against TKI-resistant NSCLC. These novel compounds inhibited the EGFR T790M kinase activity at concentrations in the range of 85.3 to 519.9 nM. In particular, compound 7e exhibited the strongest activity against both EGFRWT (IC50 = 96.9 nM) and EGFRT790M (IC50 = 85.3 nM) kinases in the cells. Compared with inhibitor 7e, compound 7b displayed enhanced antiproliferative activity against gefitinib-resistant H1975 cells harboring the EGFR T790M mutation. In addition, compound 7b also has low toxicity against the normal human liver cells LO2, with an IC50 of 11.1 µM. Moreover, both the AO/EB and DAPI staining assays also demonstrated the inhibitory efficacy of 7b against the resistant H1975 cells. This contribution provides a new scaffold 2(1H)-pyrimidinone as potential EGFR T790M inhibitor against drug-resistant NSCLC.  相似文献   

2.
SIRT6 is a deacetylase of histone H3 and inhibitors of SIRT6 have been thought as potential agents for treatment of diabetes. Herein we report the discovery of a series of new SIRT6 inhibitors containing the skeleton 1-phenylpiperazine. Among them, compound 5-(4-methylpiperazin-1-yl)-2-nitroaniline (6d) is the most potent one, which showed an IC50 value of 4.93 μM against SIRT6 in the Fluor de Lys (FDL) assay. It displayed KD values of 9.76 μM and 10 μM in surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays, respectively. In selectivity assay, 6d showed no activity against other members of the HDAC family (SIRT1-3 and HDAC1-11) at concentrations up to 200 µM. In a mouse model of type 2 diabetes, 6d could significantly increase the level of glucose transporter GLUT-1, thereby reducing blood glucose. Overall, this study provides a promising lead compound for subsequent drug discovery targeting SIRT6.  相似文献   

3.
A series of novel 5-(benzyloxy)pyridin-2(1H)-ones were designed, synthesized and biologically evaluated for c-Met inhibition. Various amides and benzoimidazoles at C-3 position were investigated. A potent compound 12b with a c-Met IC50 of 12 nM was identified. This compound exhibited potent inhibition of EBC-1 cell associated with c-Met constitutive activation and showed high selectivity for c-Met than other tested 11 kinases. The binding model 12b with c-Met was disclosed by docking analysis.  相似文献   

4.
A series of novel oxazaphosphorine prodrugs of 9-(2-phosphonomethoxyethyl)adenine (PMEA, adefovir) were synthesized and their anti-hepatitis B virus (HBV) activity was evaluated in HepG2 2.2.15 cells, with adefovir dipivoxil as a reference drug. In the cell assays, compounds 7b and 7d exhibited anti-HBV activity comparable to that of adefovir dipivoxil, while compound 7c, with an IC50 value of 0.12 μM, was found to be three times more potent than the reference compound. In vitro stability studies showed that (SP,S)-7c, the diastereomer of compound 7c, was stable in human blood plasma but underwent rapid metabolism to release the parent drug PMEA in liver microsomes. The possible metabolic pathway of (SP,S)-7c in human liver microsomes was described. These findings suggest that compound (SP,S)-7c is a promising anti-HBV drug candidate for further development.  相似文献   

5.
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a–al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.  相似文献   

6.
Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on a N1-(isoquinolin-5-yl)-N2-phenylpyrrolidine-1,2-dicarboxamide platform that evolved from a 5-aminoisoquinoline urea lead. Advancing the SAR of this series led to the eventual identification of 3b, comprising a p-Br substituted phenyl. In a TRPV1 functional assay, using cells expressing recombinant human TRPV1 channels, 3b displayed potent antagonism activated by capsaicin (IC50 = 0.084 μM) and protons (IC50 = 0.313 μM). In the preliminary analgesic and body temperature tests, 3b exhibited good efficacy in capsaicin-induced and heat-induced pain models and without hyperthermia side-effect. On the basis of its superior profiles, 3b could be considered as the lead candidate for the further development of antinociceptive drugs.  相似文献   

7.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin and leptin signaling. The development of small molecular inhibitors targeting PTP1B has been validated as a potential therapeutic strategy for Type 2 diabetes (T2D). In this work, we have identified a series of compounds containing dihydropyridine thione and particular chiral structure as novel PTP1B inhibitors. Among those, compound 4b showed moderate activity with IC50 value of 3.33 μM and meanwhile with good selectivity (>30-fold) against TCPTP. The further MOA study of PTP1B demonstrated that compounds 4b is a substrate-competitive inhibitor. The binding mode analysis suggested that compound 4b simultaneously occupies the active site and the second phosphotyrosine (pTyr) binding site of PTP1B. Furthermore, the cell viability assay of compound 4b showed tolerable cytotoxicity in L02 cells, thus 4b may be prospectively used to further in vivo study.  相似文献   

8.
The α,β-unsaturated-enone contained natural products have been reported showing NF-κB inhibition effect. It is well known that NF-κB inhibitors can also be used to inhibit osteoclastogenesis. In a continual discovery new agents for anti-osteoclastogenesis, 8 different type compounds with α,β-unsaturated-enone fragments from our in-house library were evaluated for NF-κB inhibition and anti-osteoclastogenesis. Experimental results indicated five compounds exhibited inhibition of NF-κB signal pathway. Among them, one compound ((E)-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, 6a) simultaneously inhibits both osteoclastogenesis and NF-κB signal pathway. Furthermore, 12 compounds with similar scaffold with 6a were tested for anti-osteoclastogenesis. As a result, 9 compounds inhibited both NF-κB and osteoclastogenesis. Among them, compound 6b is the most potent inhibitor against NF-κB (IC50 = 2.09 μM) and osteoclast differentiation (IC50 = 0.86 μM). Further studies show that compound 6b blocks the phosphorylation of both p65 and IκBα, and suppresses NF-κB targeted gene expression without interfering MAPKs and PI3K/Akt signal transduction pathways. This study demonstrates that we can identify promising synthesized compounds with new scaffolds as therapeutic solutions against osteoclastogenesis inspired by the privileged fragment derived from natural leads.  相似文献   

9.
In our efforts to develop novel dual c-Met/VEGFR-2 inhibitors as potential anticancer agents, a series of 2-substituted-4-(2-fluorophenoxy) pyridine derivatives bearing pyrazolone scaffold were designed and synthesized. The cell proliferation assay in vitro demonstrated that most target compounds had inhibition potency on both c-Met and VEGFR-2, especially compound 9h, 12b and 12d. Based on the further enzyme assay in vitro, compound 12d was considered as the most promising one, the IC50 values of which were 0.11 μM and 0.19 μM for c-Met and VEGFR-2, respectively. Further molecular docking studies suggested a common mode of interaction at the ATP-binding site of c-Met and VEGFR-2, indicating that 12d was a potential compound for cancer therapy deserving further study.  相似文献   

10.
New N-4-piperazinyl derivatives of ciprofloxacin 2ag were prepared and tested for their cytotoxic activity. The primary in vitro one dose anticancer assay experienced promising cytotoxic activity against different cancer cell lines especially non-small cell lung cancer. Independently, compounds 2b, 2d, 2f and 2g showed anticancer activity against human non-small cell lung cancer A549 cells (IC50 = 14.8, 24.8, 23.6 and 20.7 μM, respectively) compared to the parent ciprofloxacin (IC50 >100 μM) and doxorubicin as a positive control (IC50 = 1 μM). The flow cytometric analysis for 2b showed dose dependent G2/M arrest in A549 cells. Also, 2b increased the expression of p53 and p21 and decreased the expression of cyclin B1 and Cdc2 proteins in A549 cells without any effect on the same proteins expression in WI-38 cells. Specific inhibition of p53 by pifithrin-α reversed the G2/M phase arrest induced by the 2b compound, suggesting contribution of p53 to increase. Taken together, 2b induced G2/M phase arrest via p53/p21 dependent pathway. The results indicate that 2b can be used as a lead compound for further development of new derivatives against non-small cell lung cancer.  相似文献   

11.
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure–activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50 = 0.019 μM, rat IC50 = 0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.  相似文献   

12.
A series of 2-acetyl-5-O-(amino-alkyl)phenol derivatives was designed, synthesized and evaluated as multi-function inhibitors for the treatment of Alzheimer’s disease (AD). The results revealed that compound TM-3 indicated selective AChE inhibitory potency (eeAChE, IC50 = 0.69 μM, selective index (SI) = 32.7). Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-3 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. And TM-3 was also a highly selective MAO-B inhibitor (IC50 = 6.8 μM). Moreover, TM-3 could act as antioxidant (ORAC value was 1.5eq) and neuroprotectant, as well as a selective metal chelating agent. More interestingly, compound TM-3 could cross the blood-brain barrier (BBB) in vitro and abided by Lipinski’s rule of five. Therefore, compound TM-3, a promising multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against AD.  相似文献   

13.
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors.  相似文献   

14.
A series of salicylamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease. In vitro assays demonstrated that most of the derivatives were selective AChE inhibitors. They showed good inhibitory activities of self- and Cu2+-induced Aβ1–42 aggregation, and significant antioxidant activities. Among them, compound 15b exhibited good inhibitory activity toward RatAChE and EeAChE with IC50 value of 10.4 μM and 15.2 μM, respectively. Moreover, 15b displayed high antioxidant activity (2.46 Trolox equivalents), good self- and Cu2+-induced Aβ1–42 aggregation inhibitory potency (42.5% and 31.4% at 25.0 μM, respectively) and moderate disaggregation ability to self- and Cu2+-induced Aβ1–42 aggregation fibrils (23.4% and 27.0% at 25 μM, respectively). Furthermore, 15b also showed biometal chelating abilities, anti-neuroinflammatory ability and BBB permeability. These multifunctional properties indicated compound 15b was worthy of being chosen for further pharmacokinetics, toxicity and behavioral researches to test its potential for AD treatment.  相似文献   

15.
As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3ad, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50’s in 1.79–4.35 μM range; COX-2 selectivity index (SI) = 6.8–16.7 range). Compound 3b emerged as most potent (COX-2 IC50 = 1.79 μM; COX-1 IC50 >30 μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5 h) in comparison to celecoxib (51.44% inhibition of edema at 5 h) in carrageenan-induced rat paw edema assay. Structure–activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1.  相似文献   

16.
VEGFR, ERK and Abl had been respectively identified as good drug targets, and their crosstalk also had been well elaborated. Multitarget drugs were more advantageous for cancer treatment, however, no inhibitors simultaneously acting on the three proteins were developed due to their structural diversities. Herein, N-(4-((2-(2-(naphthaen-1-yl)acetamido)ethyl)carbamoyl)piperidin-4-yl)-6-(trifluoromethyl)nicotinamide (NEPT, 6a) was discovered as an active scaffold against VEGFR-2, ERK-2 and Abl-1 kinases through the combination of support vector machine, similarity searching and molecular docking. NEPT and its derivatives were synthesized by convenient routine, their in vitro anti-proliferative abilities against human liver cancer cell line HepG2 were preliminarily evaluated. A representative compound 6b showed an IC50 value of 11.3 μM and induced significant HepG2 cells apoptosis. Besides, these compounds displayed better anti-proliferative abilities against K562 cells (a cell line with typical hyperactivity of the above multikinases), for example compound 6b exhibited an IC50 value of 4.5 μM. Based on hepatotoxicity case reports of Abl inhibitors, cytotoxicity of synthetic compounds against normal liver cell lines (QSG7701 and HL7702) was studied, 6b had a similar toxic effect with positive control imatinib, and most compounds showed less than 35% inhibition activities at 100 μM. Molecular docking study disclosed interactions of 6b with VEGFR-2, ERK-2 and Abl-1 kinases, respectively. Our data suggested the biological activities of 6b may derived from collaborative effects of VEGFR-2, ERK-2 and Abl-1 inhibition.  相似文献   

17.
Enhancer of zeste homolog 2 (EZH2) serves as the catalytic subunit of the polycomb repression complex 2 (PRC2), which is implicated in cancer progression metastasis and poor prognosis. Based on our EZH2 inhibitor SKLB1049 with low nanomolar activity, we extended the “tail” region to get a series of (E)-1,2-diphenylethene derivatives as novel EZH2 inhibitors. SAR exploration and preliminary assessment led to the discovery of the potent novel EZH2 inhibitor 9b (EZH2WT IC50 = 22.0 nM). Compound 9b inhibited the proliferation of WSU-DLCL2 and SU-DHL-4 cell lines (IC50 = 1.61 µM and 2.34 µM, respectively). The biological evaluation showed that 9b was a potent inhibitor for wild-type EZH2 and greatly reduced the overall levels of H3K27me3 in a concentration-dependent manner. Further study indicated that 9b could significantly induce apoptosis of SU-DHL-4 cells. These findings indicated that 9b would be an attractive lead compound for further optimization and evaluation.  相似文献   

18.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

19.
The new derivatives based on (Z)-3-(arylamino)-1-(3-phenylimidazo[1,5-a]pyridin-1-yl)prop-2-en-1-one scaffold was synthesized and evaluated for their in vitro cytotoxic potential against a panel of cancer cell lines, viz., A549 (human lung cancer), HCT-116 (human colorectal cancer), B16F10 (murine melanoma cancer), BT-474 (human breast cancer), and MDA-MB-231 (human triple-negative breast cancer). Among them, many of the synthesized compounds exhibited promising cytotoxic potential against the panel of tested cancer cell lines with IC50 <30 µM. Based on the preliminary screening results, the structure-activity relationship (SAR) of the compounds was established. Among the synthesized compounds, 15i displayed a potential anti-proliferative activity against HCT-116 cancer cell line with an IC50 value of 1.21 ± 0.14 µM. Flow cytometric analysis revealed that compound 15i arrested the G0/G1 phase of the cell cycle. Moreover, increased reactive oxygen species (ROS) generation, clonogenic assay, acridine orange staining, DAPI nuclear staining, measurement of mitochondrial membrane potential (ΔΨm), and annexin V-FITC assays revealed that compound 15i promoted cell death through apoptosis.  相似文献   

20.
A series of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydro-quinoxaline moiety were synthesized and evaluated for their antiproliferative activity against five human cancer cell lines (A549, H460, HT-29, MKN-45 and U87MG) in vitro. Most of the tested compounds exhibited more potent inhibitory activities than the positive control foretinib. Compound 1b, 1s and 1t were further examined for their inhibitory activity against c-Met kinase. The most promising compound 1s (with c-Met IC50 value of 1.42 nM) showed remarkable cytotoxicity against A549, H460, HT-29, MKN45 and U87MG cell lines with IC50 values of 0.39 μM, 0.18 μM, 0.38 μM, 0.81 μM, respectively. Their preliminary structure-activity relationships (SARs) study indicated that the replacement of the aromatic ring with the cyclohexane improved their antiproliferative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号