首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.  相似文献   

3.
4.
Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.  相似文献   

5.
6.
7.
8.
9.
A key feature of arbuscular mycorrhizal symbiosis is improved phosphorus nutrition of the host plant via the mycorrhizal pathway, i.e., the fungal uptake of Pi from the soil and its release from arbuscules within root cells. Efficient transport of Pi from the fungus to plant cells is thought to require a proton gradient across the periarbuscular membrane (PAM) that separates fungal arbuscules from the host cell cytoplasm. Previous studies showed that the H+-ATPase gene HA1 is expressed specifically in arbuscule-containing root cells of Medicago truncatula. We isolated a ha1-2 mutant of M. truncatula and found it to be impaired in the development of arbuscules but not in root colonization by Rhizophagus irregularis hyphae. Artificial microRNA silencing of HA1 recapitulated this phenotype, resulting in small and truncated arbuscules. Unlike the wild type, the ha1-2 mutant failed to show a positive growth response to mycorrhizal colonization under Pi-limiting conditions. Uptake experiments confirmed that ha1-2 mutants are unable to take up phosphate via the mycorrhizal pathway. Increased pH in the apoplast of abnormal arbuscule-containing cells of the ha1-2 mutant compared with the wild type suggests that HA1 is crucial for building a proton gradient across the PAM and therefore is indispensible for the transfer of Pi from the fungus to the plant.  相似文献   

10.
11.
12.
The postembryonic development of lateral roots and nodules is a highly regulated process. Recent studies suggest the existence of cross talk and interdependency in the growth of these two organs. Although plant hormones, including auxin and cytokinin, appear to be key players in coordinating this cross talk, very few genes that cross-regulate root and nodule development have been uncovered so far. This study reports that a homolog of CELL DIVISION CYCLE16 (CDC16), a core component of the Anaphase Promoting Complex, is one of the key mediators in controlling the overall number of lateral roots and nodules. A partial suppression of this gene in Medicago truncatula leads to a decrease in number of lateral roots and a 4-fold increase in number of nodules. The roots showing lowered expression of MtCDC16 also show reduced sensitivity to phytohormone auxin, thus providing a potential function of CDC16 in auxin signaling.As in all eukaryotic organisms, cell division in plants is strictly controlled by a concerted action of several key regulators, such as cyclin-dependent kinases and cyclins (De Veylder et al., 2007). The progression of the cell cycle from one phase to another requires the targeted degradation of selected cyclin molecules mediated by two ubiquitin-mediated proteolytic pathways. The SKP1-Cullin/F-Box protein (SCF) pathway acts in the G1-to-S phase transition by degrading the D-type cyclins and other substrate proteins (Yanagawa and Kimura, 2005). The second pathway, mediated by Anaphase Promoting Complex/Cyclosome (APC/C), regulates the sequential destruction of A- and B-type cyclins in a D-box or a KEN-box-dependent manner, resulting in chromosome segregation and exit from mitosis (Genschik et al., 1998; Pfleger and Kirschner, 2000). Evidence of the role of the APC/C in plant development comes from studies of the Arabidopsis (Arabidopsis thaliana) hobbit (hbt) mutant that shows defects in root growth. The HBT gene is required for both cell division and cell differentiation in root meristems and encodes CDC27, a core subunit of APC/C (Blilou et al., 2002; Perez-Perez et al., 2008). Cebolla et al. (1999) used the root nodule system of the model legume Medicago truncatula to study the function of an APC/C activator, CCS52, which is homologous to the yeast APC/C activator CDH1. A nodule-specific homolog of CCS52, CCS52A, was found to be required to initiate endoreduplication in the dividing cells, and its down-regulation affected nodule development, resulting in lower ploidy, reduced cell size, and inefficient rhizobial invasion and nodule maturation (Vinardell et al., 2003; Kondorosi et al., 2005). T-DNA insertions in the Arabidopsis CELL DIVISION CYCLE16 (CDC16) and APC2 genes result in gametophytic lethality due to the failure to degrade mitotic cyclins (Capron et al., 2003b; Kwee and Sundaresan, 2003). Although the completed Arabidopsis genome has allowed the identification of homologs of almost all vertebrate APC/C subunits in plants (Capron et al., 2003a), the functions of most of these subunits still remains largely unexplored.Direct links between root growth and auxin signaling have been well documented. Several Arabidopsis mutants with decreased auxin sensitivity often exhibit an overall defect in both primary and lateral root development (Hellmann and Estelle, 2002; Casimiro et al., 2003; Hellmann et al., 2003; Vanneste et al., 2005). A number of these auxin-resistant mutants belong to the SCF proteolysis pathway, supporting a role for the SCF pathway in auxin signaling (Teale et al., 2006; Benjamins and Scheres, 2008). Auxin appears to control lateral root development by promoting G1-to-S transition in selected xylem pericycle cells, perhaps by targeting KRP2, a cyclin-dependent kinase inhibitor, and E2F, an S phase inhibitor to SCF-mediated proteolysis (del Pozo et al., 2002; Himanen et al., 2002). Unlike SCF, the role of APC/C in auxin-mediated plant development is not clear. The only report that has so far integrated APC/C with auxin signaling pertains to the hbt mutant, which shows an increased resistance to exogenous auxin due to accumulation of Aux/IAAs in the roots (Blilou et al., 2002).As in lateral roots, auxin is an important player in the development of nodules on the roots of leguminous plants (Beveridge et al., 2007). Studies with auxin-responsive reporter gene constructs have shown auxin''s participation in cortical cell reactivation and initiation of nodule primordia (Mathesius et al., 1998). The exogenous application of Nod factor results in a transient inhibition of auxin transport capacity in roots of Vicia sativa (Boot et al., 1999) and Trifolium repens (Mathesius et al., 1998). Consistent with this, localized application of synthetic auxin transport inhibitors on alfalfa (Medicago sativa) roots induces pseudonodules (Hirsch et al., 1989). Complementing these findings, a more recent study in M. truncatula has demonstrated that increased auxin transport, caused by silencing the flavonoid pathway, results in reduced nodule formation in response to rhizobia (Wasson et al., 2006). Finally, hypernodulating mutants like sunn and skl show defective long-distance transport of auxin, further suggesting the importance of polar auxin transport, not only in regulating nodule induction but also in controlling nodule numbers (Prayitno et al., 2006; van Noorden et al., 2006).In this report, we investigated the role of the APC/C component CDC16 in root and nodule development in M. truncatula. CDC16 was identified via microarray analysis as a gene that was significantly induced in roots of M. truncatula following inoculation by Sinorhizobium meliloti and in nodules relative to uninoculated roots (Kuppusamy, 2005), thus encouraging further functional analysis of this gene. To overcome the problem of the gametophytic lethality resulting from CDC16 knockout, as seen from analysis of an insertional mutation in Arabidopsis (Kwee and Sundaresan, 2003) we undertook an RNA interference (RNAi) approach to partially suppress the expression of CDC16 gene in Agrobacterium rhizogenes-transformed roots of M. truncatula. We report that roots transformed with the CDC16 RNAi construct (hereafter called Mtcdc16i roots) displayed a decreased sensitivity to auxin, defective primary root growth, and fewer lateral roots. Interestingly, in response to S. meliloti, the Mtcdc16i roots showed almost 4-fold increase in number of nodules, suggesting that decreased sensitivity to auxin leads to a hypernodulation phenotype. Thus, this work highlights the importance of CDC16 in root and nodule development and indicates a possible role for this gene in auxin signaling.  相似文献   

13.
14.
15.
16.
The INhibitor of Growth (ING) proteins act as type II tumor suppressors and epigenetic regulators, being stoichiometric members of histone acetyltransferase and histone deacetylase complexes. Expression of the alternatively spliced ING1a tumor suppressor increases >10-fold during replicative senescence. ING1a overexpression inhibits growth; induces a large flattened cell morphology and the expression of senescence-associated β-galactosidase; increases Rb, p16, and cyclin D1 levels; and results in the accumulation of senescence-associated heterochromatic foci. Here we identify ING1a-regulated genes and find that ING1a induces the expression of a disproportionate number of genes whose products encode proteins involved in endocytosis. Intersectin 2 (ITSN2) is most affected by ING1a, being rapidly induced >25-fold. Overexpression of ITSN2 independently induces expression of the p16 and p57KIP2 cyclin-dependent kinase inhibitors, which act to block Rb inactivation, acting as downstream effectors of ING1a. ITSN2 is also induced in normally senescing cells, consistent with elevated levels of ING1a inducing ITSN2 as part of a normal senescence program. Inhibition of endocytosis or altering the stoichiometry of endosome components such as Rab family members similarly induces senescence. Knockdown of ITSN2 also blocks the ability of ING1a to induce a senescent phenotype, confirming that ITSN2 is a major transducer of ING1a-induced senescence signaling. These data identify a pathway by which ING1a induces senescence and indicate that altered endocytosis activates the Rb pathway, subsequently effecting a senescent phenotype.  相似文献   

17.
Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.  相似文献   

18.
A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast''s native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号