首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen‐fixing soil bacteria to form a new specific organ: the nitrogen‐fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE‐domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock‐down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume‐specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.  相似文献   

3.
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.  相似文献   

4.
In plants, root system architecture is determined by the activity of root apical meristems, which control the root growth rate, and by the formation of lateral roots. In legumes, an additional root lateral organ can develop: the symbiotic nitrogen-fixing nodule. We identified in Medicago truncatula ten allelic mutants showing a compact root architecture phenotype (cra2) independent of any major shoot phenotype, and that consisted of shorter roots, an increased number of lateral roots, and a reduced number of nodules. The CRA2 gene encodes a Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) that primarily negatively regulates lateral root formation and positively regulates symbiotic nodulation. Grafting experiments revealed that CRA2 acts through different pathways to regulate these lateral organs originating from the roots, locally controlling the lateral root development and nodule formation systemically from the shoots. The CRA2 LRR-RLK therefore integrates short- and long-distance regulations to control root system architecture under non-symbiotic and symbiotic conditions.  相似文献   

5.
Legumes develop different types of lateral organs from their primary root, lateral roots and nodules, the latter depending on a symbiotic interaction with Sinorhizobium meliloti. Phytohormones have been shown to function in the control of these organogeneses. However, related signaling pathways have not been identified in legumes. We cloned and characterized the expression of Medicago truncatula genes encoding members of cytokinin signaling pathways. RNA interference of the cytokinin receptor homolog Cytokinin Response1 (Mt CRE1) led to cytokinin-insensitive roots, which showed an increased number of lateral roots and a strong reduction in nodulation. Both the progression of S. meliloti infection and nodule primordia formation were affected. We also identified two cytokinin signaling response regulator genes, Mt RR1 and Mt RR4, which are induced early during the symbiotic interaction. Induction of these genes by S. meliloti infection is altered in mutants affected in the Nod factor signaling pathway; conversely, cytokinin regulation of the early nodulin Nodule Inception1 (Mt NIN) depends on Mt CRE1. Hence, cytokinin signaling mediated by a single receptor, Mt CRE1, leads to an opposite control of symbiotic nodule and lateral root organogenesis. Mt NIN, Mt RR1, and Mt RR4 define a common pathway activated during early S. meliloti interaction, allowing crosstalk between plant cytokinins and bacterial Nod factors signals.  相似文献   

6.
The Medicago truncatula LATD/NIP gene is essential for the development of lateral and primary root and nitrogen-fixing nodule meristems as well as for rhizobial invasion of nodules. LATD/NIP encodes a member of the NRT1(PTR1) nitrate and di-and tri-peptide transporter family, suggesting that its function is to transport one of these or another compound(s). Because latd/nip mutants can have their lateral and primary root defects rescued by ABA, ABA is a potential substrate for transport. LATD/NIP expression in the root meristem was demonstrated to be regulated by auxin, cytokinin and abscisic acid, but not by nitrate. LATD/NIP''s potential function and its role in coordinating root architecture and nodule formation are discussed.Key words: nodule development, lateral root development, root architecture, symbiotic nitrogen fixation, Medicago truncatula, NRT1(PTR) gene familyUnlike most other plants, legumes form two kinds of lateral root organs: lateral roots and nitrogen-fixing root nodules that form in conjunction with compatible symbiotic rhizobium bacteria. Although the morphology and function of these two root organs is distinct, both require the function of the LATD/NIP gene, indicating shared genetic components for these two developmental processes and providing support for a model in which legume nodules evolved from a lateral root blueprint. Both lateral roots and nodules initiate in previously differentiated root cells in response to environmental and developmental cues mediated by hormones. Interestingly, regulation of nodules and lateral roots by hormones is often opposite, allowing formation of one organ or another depending on the conditions.  相似文献   

7.
8.
The plant root system is important for plant anchorage and nutrition. Among the different characteristics of the root system, root branching is a major factor of plasticity and adaptation to changing environments. Indeed, many biotic and abiotic stresses, such as drought or symbiotic interactions, influence root branching. Many studies concerning root development and root branching were performed on the model plant Arabidopsis thaliana, but this model plant has a very simplified root structure and is not able to establish any symbiotic interactions. We have recently described 7 stages for lateral root development in the model legume Medicago truncatula and found significant differences in the tissular contribution of root cell layers to the formation of new lateral roots (LR). We have also described 2 transgenic lines expressing the DR5:GUS and DR5:VENUS-N7 reporter genes that are useful to follow LR formation at early developmental stages. Here, we describe the use of these transgenic lines to monitor LR developmental responses of M. truncatula to the phytohormone abscisic acid (ABA) which is a major actor of stress and symbiotic interactions. We show that ABA promotes the formation of new lateral root primordia and their development, mostly at the late, pre-emergence stage.  相似文献   

9.
10.
Precise quantification of differences in gene expression between plants requires the use of “reference” genes, which are stably expressed across different lines and treatments and serve as endogenous controls for normalizing gene expression data. The objectives of this study were to determine the expression stability of several reference genes across five different lentil varieties subjected to either cold stress, inoculation with Sclerotinia sclerotiorum, the causal agent of white mold disease, or inoculation with Aphanomyces euteiches, the causal agent of Aphanomyces root rot. Expression stability was examined in the stems and leaves of plants subjected to cold stress or inoculation with S. sclerotiorum and in the roots of plants inoculated with A. euteiches. Real-time PCR assays (SYBR Green) were designed for six different genes: translation initiation factor (TIF), 18S rRNA, actin, β-tubulin-2, β-tubulin-3, and glyceraldehyde 3-phosphate dehydrogenase. TIF, actin, and 18S rRNA tended to be the most stably expressed genes, with expression stability (M) values less than 0.5 during cold stress and inoculation with A. euteiches. Two reference genes were required to normalize data from plants exposed to cold stress or inoculated with A. euteiches. The reference genes exhibited the lowest expression stability in plants inoculated with S. sclerotiorum, for which five reference genes were required to normalize data. The reference genes reported in this study appear to have a promise for examining gene expression in lentil foliar and root tissues in response to diverse abiotic and biotic factors.  相似文献   

11.
The plant growth promoting rhizobacterium Azospirillum brasilense Sp245 enhances biomass production in cereals and horticultural species and is an interesting model to study the physiology of the phytostimulation program. Although auxin production by Azospirillum appears to be critical for root architectural readjustments, the role of cytokinins in the growth promoting effects of Azospirillum remains unclear. Here, Arabidopsis thaliana seedlings were co-cultivated in vitro with A. brasilense Sp245 to assess whether direct contact of roots with bacterial colonies or exposure to the bacterial volatiles using divided Petri plates would affect biomass production and root organogenesis. Both interaction types increased root and shoot fresh weight but had contrasting effects on primary root length, lateral root formation and root hair development. Cell proliferation in root meristems analyzed with the CYCB1;1::GUS reporter decreased over time with direct contact, but was augmented by plant exposure to volatiles. Noteworthy, the expression of the cytokinin-inducible reporters TCS::GFP and ARR5::GUS increased in root tips in response to bacterial contact, without being affected by the volatiles. In A. thaliana having single (cre1-12, ahk2-2, ahk3-3), double (cre1-12/ahk2-2, cre1-12/ahk3-3, ahk2-2/ahk3-3) or triple (cre1-12/ahk2-2/ahk3-3) mutations in canonical cytokinin receptors, only the triple mutant had a marked effect on plant growth in response to A. brasilense. These results show that different mechanisms are elicited by A. brasilense, which influence the cytokinin-signaling pathway.  相似文献   

12.
13.
Summary

Mycorrhizal associations vary widely in structure and function, but the commonest interaction is the Arbuscular Mycorrhizal (AM) symbiosis which forms between the roots of over 80% of all terrestrial plant species and Zygomycete fungi of the Order Glomales. These are obligate symbionts which colonise plant root cells. This symbiosis confers benefits directly to the host plants through the acquisition of phosphate and other mineral nutrients from the soil by the fungus while the fungus receives a carbon source from the host. In addition, the symbiosis may also enhance the plants resistance to biotic and abiotic stresses. The beneficial effects of AM symbioses occur as a result of a complex molecular dialogue between the two symbiotic partners. Identifying the molecules and genes involved in the dialogue is necessary for a greater understanding of the symbiosis. This paper reviews the process of AM fungal colonisation of plant roots and the underlying molecular mechanisms associated with the formation and functioning of an AM symbiosis.  相似文献   

14.
Previously it has been shown that the floral scent of snapdragon flowers consists of a relatively simple mixture of volatile organic compounds (VOCs). These compounds are thought to be involved in the attraction of pollinators; however, little is known about their effect on other organisms, such as neighboring plants. Here, we report that VOCs from snapdragon flowers inhibit Arabidopsis root growth. Out of the three major snapdragon floral volatiles, myrcene, (E)-β-ocimene, and methyl benzoate (MB), MB was found to be primarily responsible for the inhibition of root growth. Ten micromoles MB reduced root length by 72.6%. We employed a microarray approach to identify the MB target genes in Arabidopsis that were responsible for the root growth inhibition phenotype in response to MB. These analyses showed that MB treatment affected 1.33% of global gene expression, including cytokinin, auxin and other plant-hormone-related genes, and genes related to seed germination processes in Arabidopsis. Accordingly, the root growth of cytokinin (cre1) and auxin (axr1) response mutants was less affected than that of the wild type by the volatile compound: roots of the treated mutants were reduced by 45.1 and 56.2%, respectively, relative to untreated control mutants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
18.
Nitric oxide (NO) is a signaling molecule involved in plant responses to abiotic and biotic stresses. While there is evidence for NO accumulation during legume nodulation, almost no information exists for arbuscular mycorrhizas (AM). Here, we investigated the occurrence of NO in the early stages of Medicago truncatulaGigaspora margarita interaction, focusing on the plant response to fungal diffusible molecules. NO was visualized in root organ cultures and seedlings by confocal microscopy using the specific probe 4,5-diaminofluorescein diacetate. Five-minute treatment with the fungal exudate was sufficient to induce significant NO accumulation. The specificity of this response to AM fungi was confirmed by the lack of response in the AM nonhost Arabidopsis thaliana and by analyzing mutants impaired in mycorrhizal capacities. NO buildup resulted to be partially dependent on DMI1, DMI2, and DMI3 functions within the so-called common symbiotic signaling pathway which is shared between AM and nodulation. Significantly, NO accumulation was not induced by the application of purified Nod factor, while lipopolysaccharides from Escherichia coli, known to elicit defense-related NO production in plants, induced a significantly different response pattern. A slight upregulation of a nitrate reductase (NR) gene and the reduction of NO accumulation when the enzyme is inhibited by tungstate suggest NR as a possible source of NO. Genetic and cellular evidence, therefore, suggests that NO accumulation is a novel component in the signaling pathway that leads to AM symbiosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号