首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanogens play a critical role in the decomposition of organics under anaerobic conditions. The methanogenic consortia in saturated wetland soils are often subjected to large temperature fluctuations and acidic conditions, imposing a selective pressure for psychro- and acidotolerant community members; however, methanogenic communities in engineered digesters are frequently maintained within a narrow range of mesophilic and circumneutral conditions to retain system stability. To investigate the hypothesis that these two disparate environments have distinct methanogenic communities, the methanogens in an oligotrophic acidic fen and a mesophilic anaerobic digester treating municipal wastewater sludge were characterized by creating clone libraries for the 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes. A quantitative framework was developed to assess the differences between these two communities by calculating the average sequence similarity for 16S rRNA genes and mcrA within a genus and family using sequences of isolated and characterized methanogens within the approved methanogen taxonomy. The average sequence similarities for 16S rRNA genes within a genus and family were 96.0 and 93.5%, respectively, and the average sequence similarities for mcrA within a genus and family were 88.9 and 79%, respectively. The clone libraries of the bog and digester environments showed no overlap at the species level and almost no overlap at the family level. Both libraries were dominated by clones related to uncultured methanogen groups within the Methanomicrobiales, although members of the Methanosarcinales and Methanobacteriales were also found in both libraries. Diversity indices for the 16S rRNA gene library of the bog and both mcrA libraries were similar, but these indices indicated much lower diversity in the 16S digester library than in the other three libraries.  相似文献   

2.
The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and formate-utilizing family Methanomicrobiales, two mcrA and 16S rRNA lineages were closely affiliated with cultured species of the genera Methanoculleus and Methanocorpusculum. The most frequently recovered mcrA PCR amplicons within the Methanomicrobiales did not branch with any cultured genera. Within the nutritionally versatile family Methanosarcinales, one 16S rRNA amplicon and most of the mcrA PCR amplicons were affiliated with the obligately acetate utilizing species Methanosaeta concilii. The mcrA clone libraries also included phylotypes related to the methyl-disproportionating genus Methanococcoides. However, two mcrA and two 16S rRNA lineages within the Methanosarcinales were unrelated to any cultured genus. Overall, the clone libraries indicate a diversified methanogen community that uses H2/CO2, formate, acetate, and methylated substrates. Phylogenetic affiliations of mcrA and 16S rRNA clones with thermophilic and nonthermophilic cultured isolates indicate a mixed mesophilic and thermophilic methanogen community in the surficial Guaymas sediments.  相似文献   

3.
Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations.  相似文献   

4.
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.  相似文献   

5.
In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products.  相似文献   

6.
In the present study, the diversity of rumen methanogens in crossbred Karan Fries cattle was determined by constructing 16S rRNA and mcrA (methyl coenzyme-M reductase α subunit) gene libraries using specific primers. All thirteen OTUs or phylotypes from 16S rRNA library clustered with order Methanobacteriales, twelve of which aligned with Methanobrevibacter spp., whereas one OTU resemble with Methanosphaera stadtmanae. Out of eighteen OTUs identified from mcrA gene library, fifteen clustered with order Methanobacteriales, two resemble with Methanomicrobiales and remaining one grouped with Methanosarcinales. These results revealed that Methanobrevibacter phylotype was predominantly present in Karan Fries crossbred cattle fed on high fibrous diet containing wheat straw. Compared to 16S rRNA gene, mcrA gene OTUs clustered in three orders providing better insights of rumen methanogens diversity in cattle.  相似文献   

7.
Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locations. In the qPCR analyses, a mean depth-wise change of mcrA gene abundance was observed from (1.23?±?0.13)×107 to (1.16?±?0.29)×108 per g dried soil, which was inversely correlated with the depletion of sulfate (R 2?=0.74; α?=?0.05) and salinity (R 2?=?0.66; α?=?0.05). The copy numbers of mcrA was at least 1 order of magnitude higher than dissimilatory sulfate reductase B (dsrB) genes, likely indicating the importance of methanogenesis at the mudflat. Sequences related to the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales, Methanococcales and the uncultured methanogens; Rice Cluster I (RC-I), Zoige cluster I (ZC-I) and anaerobic methane oxidizing archaeal lineage-1 (ANME-1) were detected. Methanomicrobiales and Methanosarcinales dominated the entire sediment layers, but detectable changes of proportions were observed with depth. The hydrogenotrophic methanogens Methanomicrobiales slightly increased with depth while Methanosarcinales showed the reverse. Chao1 and ACE richness estimators revealed higher diversity of methanogens near the surface (0–10 cm) when compared with the bottom sediments. The near-surface sediments were mainly dominated by the family Methanosarcinaceae (45 %), which has members that can utilize substrates that cannot be used by sulfate-reducing bacteria. Overall, current data indicate that Methanosarcinales and Methanomicrobiales are the most dominant methanogens within the entire depth profile down to 100 cm, with higher abundance and diversity of methanogens in the deeper and upper sediment layers, respectively.  相似文献   

8.
This study examined whether the abundance and expression of microbial 16S rRNA genes were associated with elemental concentrations and substrate conversion biokinetics in 20 full‐scale anaerobic digesters, including seven municipal sewage sludge (SS) digesters and 13 industrial codigesters. SS digester contents had higher methane production rates from acetate, propionate and phenyl acetate compared to industrial codigesters. SS digesters and industrial codigesters were distinctly clustered based on their elemental concentrations, with higher concentrations of NH3‐N, Cl, K and Na observed in codigesters. Amplicon sequencing of 16S rRNA genes and reverse‐transcribed 16S rRNA revealed divergent grouping of microbial communities between mesophilic SS digesters, mesophilic codigesters and thermophilic digesters. Higher intradigester distances between Archaea 16S rRNA and rRNA gene profiles were observed in mesophilic codigesters, which also had the lowest acetate utilization biokinetics. Constrained ordination showed that microbial rRNA and rRNA gene profiles were significantly associated with maximum methane production rates from acetate, propionate, oleate and phenyl acetate, as well as concentrations of NH3‐N, Fe, S, Mo and Ni. A co‐occurrence network of rRNA gene expression confirmed the three main clusters of anaerobic digester communities based on active populations. Syntrophic and methanogenic taxa were highly represented within the subnetworks, indicating that obligate energy‐sharing partnerships play critical roles in stabilizing the digester microbiome. Overall, these results provide new evidence showing that different feed substrates associate with different micronutrient compositions in anaerobic digesters, which in turn may influence microbial abundance, activity and function.  相似文献   

9.
In this study, the microbial community succession in a thermophilic methanogenic bioreactor under deteriorative and stable conditions that were induced by acidification and neutralization, respectively, was investigated using PCR-mediated single-strand conformation polymorphism (SSCP) based on the 16S rRNA gene, quantitative PCR, and fluorescence in situ hybridization (FISH). The SSCP analysis indicated that the archaeal community structure was closely correlated with the volatile fatty acid (VFA) concentration, while the bacterial population was impacted by pH. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (i.e., a Methanoculleus sp. and a Methanothermobacter sp.) and one species of aceticlastic methanogen (i.e., a Methanosarcina sp.). The quantitative PCR of the 16S rRNA gene from each methanogen revealed that the Methanoculleus sp. predominated among the methanogens during operation under stable conditions in the absence of VFAs. Accumulation of VFAs induced a dynamic transition of hydrogenotrophic methanogens, and in particular, a drastic change (i.e., an approximately 10,000-fold increase) in the amount of the 16S rRNA gene from the Methanothermobacter sp. The predominance of the one species of hydrogenotrophic methanogen was replaced by that of the other in response to the VFA concentration, suggesting that the dissolved hydrogen concentration played a decisive role in the predominance. The hydrogenotrophic methanogens existed close to bacteria in aggregates, and a transition of the associated bacteria was also observed by FISH analyses. The degradation of acetate accumulated during operation under deteriorative conditions was concomitant with the selective proliferation of the Methanosarcina sp., indicating effective acetate degradation by the aceticlastic methanogen. The simple methanogenic population in the thermophilic anaerobic digester significantly responded to the environmental conditions, especially to the concentration of VFAs.  相似文献   

10.
The microbial community structure of twenty-one single-phase and one two-phase full-scale anaerobic sewage sludge digesters was evaluated using oligonucleotide probes complementary to conserved tracts of the 16S rRNAs of phylogenetically defined groups of methanogens and sulfate-reducing bacteria. These probe results were interpreted in combination with results from traditional chemical analyses and metabolic activity assays. It was determined that methanogens in healthy mesophilic, single-phase sewage sludge digesters accounted for approximately 8–12% of the total community and thatMethanosarcinales andMethanomicrobiales constituted the majority of the total methanogen population.Methanobacteriales andMethanococcales played a relatively minor role in the digesters. Phylogenetic groups of mesophilic, Gram-negative sulfate-reducing bacteria were consistently present at significant levels:Desulfovibrio andDesulfobulbus spp. were the dominant sulfate-reducing populations,Desulfobacter andDesulfobacterium spp. were present at lower levels, andDesulfosarcina, Desulfococcus, andDesulfobotulus spp. were absent. Sulfate reduction by one or more of these populations played a significant role in all digesters evaluated in this study. In addition, sulfate-reducing bacteria played a role in favoring methanogenesis by providing their substrates. The analysis of the two-phase digester indicated that true phase separation was not accomplished: significant levels of active methanogens were present in the first phase. It was determined that the dominant populations in the second phase were different from those in the single-phase digesters.  相似文献   

11.
In this study, dual-cylindrical anaerobic digesters were designed and built on the pilot plant scale for the improvement of anaerobic digestion efficiency. The removal efficiency of organics, biogas productivity, yield, and microbial communities was evaluated as performance parameters of the digester. During the stable operational period in the continuous mode, the removal efficiencies of chemical oxygen demand and total solids were 74.1 and 65.1%, respectively. Biogas productivities of 63.9 m3/m3-FWW and 1.3 m3/kg-VSremoved were measured. The hydrogenotrophic methanogen orders, Methanomicrobiales and Methanobacteriales, were predominant over the aceticlastic methanogen order, Methanosarcinaceae, probably due to the tolerance of the hydrogenotrophs to environmental perturbation in the field and their faster growth rate compared with that of the aceticlastics.  相似文献   

12.
13.
Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with 14C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with 13C6-glucose and 13C3-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with 13C-glucose and 13C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with 14C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high Km for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5–10 m). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.  相似文献   

14.

The aim of this study was to develop an effective bioaugmentation concept for anaerobic digesters treating lignocellulosic biomass such as straw. For that purpose, lignocellulose-degrading methanogenic communities were enriched on wheat straw from cow and goat rumen fluid as well as from a biogas reactor acclimated to lignocellulosic biomass (sorghum as mono-substrate). The bacterial communities of the enriched cultures and the different inocula were examined by 454 amplicon sequencing of 16S rRNA genes while the methanogenic archaeal communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of the mcrA gene. Bacteroidetes was the most abundant phylum in all samples. Within the Bacteroidetes phylum, Bacteroidaceae was the most abundant family in the rumen-derived enrichment cultures, whereas Porphyromonadaceae was the predominant one in the reactor-derived culture. Additionally, the enrichment procedure increased the relative abundance of Ruminococcaceae (phylum: Firmicutes) in all cultures. T-RFLP profiles of the mcrA gene amplicons highlighted that the ruminal methanogenic communities were composed of hydrogenotrophic methanogens dominated by the order Methanobacteriales regardless of the host species. The methanogenic communities changed significantly during the enrichment procedure, but still the strict hydrogenotrophic Methanobacteriales and Methanomicrobiales were the predominant orders in the enrichment cultures. The bioaugmentation potential of the enriched methanogenic cultures will be evaluated in further studies.

  相似文献   

15.
An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests.  相似文献   

16.
【目的】揭示芦岭煤田微生物群落组成,并分析其潜在的产甲烷类型及产甲烷途径。【方法】采集芦岭煤田的煤层气样品和产出水样品,分别分析样品的地球化学性质特征;利用Illumina HiSeq高通量测序技术分析产出水中的微生物群落结构;采用添加不同底物的厌氧培养实验进一步证实芦岭煤田生物成因气的产甲烷类型。【结果】该地区煤层气为生物成因和热成因的混合成因气;古菌16S rRNA基因分析表明在产出水中含有乙酸营养型、氢营养型和甲基营养型的产甲烷菌。丰度较高的细菌具有降解煤中芳香族和纤维素衍生化合物的潜力。厌氧富集培养结果表明,添加乙酸盐、甲酸盐、H2+CO2为底物的矿井水样均有明显的甲烷产生。【结论】芦岭煤田具有丰富的生物多样性,该地区同时存在三种产甲烷类型。本研究为利用微生物技术提高煤层气的采收率,实现煤层气的可持续开采提供科学依据。  相似文献   

17.
Groundwater sampling is a critical step in subsurface microbial ecology. Here, we compared two different sampling methods: commonly used disposable bailers (unimproved sampler) and an improved sampler, the latter of which was devised to minimize exposure to the aerobic atmosphere. Microbial community analysis using the 16S rRNA and methyl coenzyme-M reductase (mcrA) genes in the lignite seam groundwater revealed that the archaeal communities in samples obtained by the improved sampler were dominated by hydrogenotrophic methanogen Methanobacterium. These results suggested that the improved sampler would be more favorable for obtaining methanogenic archaeal community than the unimproved one, and that the sampling method affected the microbial community analysis in the investigated subterranean lignite seams.  相似文献   

18.
Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.  相似文献   

19.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

20.
The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primer pairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group-specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs in detection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group-specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm (∼2 to 40°C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40°C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (≥60°C). While mcrA-based and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号