首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine plays critically important roles in tumorigenesis. Homo sapiens 3-phosphoglycerate dehydrogenase (PHGDH) catalyzes the first committed step for the synthesis of glucose-derived serine via the phosphoserine pathway and has been associated with a wide variety of cancers, including breast cancer, melanoma, colon cancer, glioma, nasopharyngeal carcinoma, cervical adenocarcinoma, etc. Azacoccone E, an aza-epicoccone derivative from the culture of Aspergillus flavipes, exhibited effective inhibitory activity against PHGDH in vitro. The microscale thermophoresis (MST) method and the cellular thermal shift assay (CETSA) confirmed that azacoccone E directly bound to PHGDH. And the cell-based experiments showed that this compound was selectively toxic to PHGDH-dependent cancer cells and could cause apoptosis. Further biochemical assays revealed that it was a noncompetitive inhibitor with respect to the substrate of 3-PG and exhibited a time-dependent inhibition. Furthermore, molecular docking demonstrated that azacoccone E coordinated in an allosteric site of PHGDH with low binding energy. Therefore, azacoccone E can be considered as a possible drug candidate targeting at PHGDH for treatment of cancers.  相似文献   

2.
3.
Murine resting (G0) T lymphocytes contained no detectable mRNA of 3-phosphoglycerate dehydrogenase (PHGDH) catalyzing the first step in the phosphorylated pathway of l-serine biosynthesis. Immobilized anti-CD3 activation of G0 T cells expressed the PHGDH mRNA in G1 with a maximum level in S phase. G0 T cells activated with either immobilized anti-CD3 plus CsA or PBu2, which failed to drive the activated T cells to enter S phase, did not express the PHGDH mRNA unless exogenous rIL-2 was added. Blocking of IL-2R signaling by adding anti-IL-2 and anti-IL-2Rα resulted in no expression of the PHGDH mRNA during immobilized anti-CD3 activation of G0 T cells. Deprivation of l-serine from culture medium or addition of antisense PHGDH oligonucleotide significantly reduced [3H]TdR incorporation of activated T cells. These results indicate that the PHGDH gene expression, dictated by IL-2R signaling, is a crucial event for DNA synthesis during S phase of activated T cells.  相似文献   

4.
Although p53 is frequently mutated in human cancers, about 80% of human melanomas retain wild-type p53. Here we report that PHGDH, the key metabolic enzyme that catalyzes the rate-limiting step of the serine biosynthesis pathway, is a target of p53 in human melanoma cells. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is enhanced dramatically in response to Nutlin-3 treatment. Moreover, PHGDH has been found recently to be amplified frequently in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knockdown of endogenous PHGDH promotes apoptosis under the same treatment. These results demonstrate an important role of p53 in regulating the serine biosynthesis pathway through suppressing PHGDH expression and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells.  相似文献   

5.
6.
The 3-alkoxy-7-amino-4-chloro-isocoumarins JLK-6 and JLK-2 have been shown to markedly reduce the production of Amyloid β-peptide (Aβ) by Amyloid-β Precursor Protein (APP) expressing HEK293 cells by affecting the γ-secretase cleavage of APP, with no effect on the cleavage of the Notch receptor. This suggested that these compounds do not directly inhibit the presenilin-dependent γ-secretase complex but more likely interfere with an upstream target involved in γ-secretase-associated pathway. The mechanism of action of these compounds is unknown and there are high fundamental and therapeutical interests to unravel their target. Isocoumarin compounds were previously shown to behave as potent mechanism-based irreversible inhibitors of serine proteases, suggesting that the JLK-directed target could belong to such enzyme family. To get further insight into structure–activity relationships and to develop more potent isocoumarin derivatives, we have synthesized and evaluated a series of isocoumarin analogues with modifications at positions 3, 4 and 7. In particular, the 7-amino group was substituted with either acyl, urethane, alkyl or aryl groups, which could represent additional interaction sites. Altogether, the results highlighted the essential integrity of the 3-alkoxy-7-amino-4-chloro-isocoumarin scaffold for Aβ-lowering activity and supported the involvement of a serine protease, or may be more generally, a serine hydrolase. The newly reported 7-N-alkyl series produced the most active compounds with an IC50 between 10 and 30 μM. Finally, we also explored peptide boronates, a series of reversible serine protease inhibitors, previously shown to also lower cellular Aβ production. The presented data suggested they could act on the same target or interfere with the same pathway as isocoumarins derivatives.  相似文献   

7.
The small-molecule inhibitor of phosphoglycerate dehydrogenase, NCT-503, reduces incorporation of glucose-derived carbons into serine in vitro. Here we describe an off-target effect of NCT-503 in neuroblastoma cell lines expressing divergent phosphoglycerate dehydrogenase (PHGDH) levels and single-cell clones with CRISPR-Cas9-directed PHGDH knockout or their respective wildtype controls. NCT-503 treatment strongly reduced synthesis of glucose-derived citrate in all cell models investigated compared to the inactive drug control and independent of PHGDH expression level. Incorporation of glucose-derived carbons entering the TCA cycle via pyruvate carboxylase was enhanced by NCT-503 treatment. The activity of citrate synthase was not altered by NCT-503 treatment. We also detected no change in the thermal stabilisation of citrate synthase in cellular thermal shift assays from NCT-503-treated cells. Thus, the direct cause of the observed off-target effect remains enigmatic. Our findings highlight off-target potential within a metabolic assessment of carbon usage in cells treated with the small-molecule inhibitor, NCT-503.  相似文献   

8.
The metabolic requirements of cancer cells differ from that of their normal counterparts. To support their proliferation, cancer cells switch to a fermentative metabolism that is thought to support biomass production. Instances where metabolic enzymes promote tumorigenesis remain rare. However, an enzyme involved in the de novo synthesis of serine, 3-phosphoglycerate dehydrogenase (PHGDH), was recently identified as a putative oncogene. The potential mechanisms by which PHGDH promotes cancer are discussed.  相似文献   

9.
Mesorhizobium loti is a Gram negative bacterium that induces N2-fixing root nodules on the model legume Lotus japonicus. Proteomic analysis in M. loti indicated that 3-phosphoglycerate dehydrogenase (EC. 1.1.1.95, PHGDH) protein content was 2.2 times higher in bacteroids than in cultured bacteria. A M. loti mutant (STM5) with a transposon insertion in the PHGDH gene, mll3875, showed an absolute dependence on serine or glycine in minimal medium for growth. When L. japonicus plants were infected with STM5, the roots formed nodules in numbers comparable to those formed by wild type M. loti; however, the nodules showed very low acetylene reduction activity, and significant starch granule accumulation was observed in the uninfected cells. In such nodules, vast necrosis occurred in the central tissue of the nodules, although bacteroids were detected in the infected cell of the nodules. These data indicate that serine or glycine biosynthesis by PHGDH is important for maintaining symbiosis and nitrogen fixation in L. japonicus nodules.  相似文献   

10.
11.
A series of fourteen N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI50 values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [3H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug resistance. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site.  相似文献   

12.
This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H37Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 μg/mL for resistance strains.  相似文献   

13.
D‐3‐phosphoglycerate dehydrogenase (PHGDH) is a key enzyme involved in the synthesis of l ‐serine. Despite the high serine content in silk proteins and the crucial role of PHGDH in serine biosynthesis, PHGDH has not been described in silkworms to date. Here, we identified PHGDH in the silkworm Bombyx mori and evaluated its biochemical properties. On the basis of the amino acid sequence and phylogenetic tree, this PHGDH has been categorized as a new type and designated as bmPHGDH. The recombinant bmPHGDH was overexpressed and purified to homogeneity. Kinetic studies revealed that PHGDH uses NADH as a coenzyme to reduce phosphohydroxypyruvate. High expression levels of bmphgdh messenger RNA (mRNA) were observed in the middle part of the silk gland and midgut in a standard strain of silkworm. Moreover, a sericin‐deficient silkworm strain displayed reduced expression of bmphgdh mRNA. These findings indicate that bmPHGDH might play a crucial role in the provision of l ‐serine in the larva of B. mori.  相似文献   

14.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

15.
Recently a series of chiral N-(phenoxyalkyl)amides have been reported as potent MT1 and MT2 melatonergic ligands. Some of these compounds were selected and tested for their antioxidant properties by measuring their reducing effect against oxidation of 2′,7′-dichlorodihydrofluorescein (DCFH) in the DCFH-diacetate (DCFH-DA) assay. Among the tested compounds, N-[2-(3-methoxyphenoxy)propyl]butanamide displayed potent antioxidant activity that was stereoselective, the (R)-enantiomer performing as the eutomer. This compound displayed strong cytoprotective activity against H2O2-induced cytotoxicity resulting slightly more active than melatonin, and performed as Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, too.  相似文献   

16.
We identified and characterized a series of pyrrole amides as potent, selective Cav3.2-blockers. This series culminated with the identification of pyrrole amides 13b and 26d, with excellent potencies and/or selectivities toward the Cav3.1- and Cav3.3-channels. These compounds display poor physicochemical and DMPK properties, making their use difficult for in vivo applications. Nevertheless, they are well-suited for in vitro studies.  相似文献   

17.
The V600E BRAF kinase mutation, which activates the downstream MAPK signaling pathway, commonly occurs in about 8% of all human malignancies and about 50% of all melanomas. In this study, we employed virtual screening and chemical synthesis to identify a series of N-(thiophen-2-yl) benzamide derivatives as potent BRAFV600E inhibitors. Structure–activity relationship studies of these derivatives revealed that compounds b40 and b47 are the two most potent BRAFV600E inhibitors in this series.  相似文献   

18.
The epigenetic treatment by 3-Deazaneplanocin A (DZNep), a histone methyltransferase inhibitor, shows great potential against acute myeloid leukemia (AML). However, the variant sensitivity and incomplete response to DZNep are commonly observed. Here, we reveal that vitamin C (Vc) dramatically promotes DZNep response against leukemic cells in different cell lines and primary AML samples. Vc enhances apoptosis and differentiation induced by DZNep in different AML cell lines in vitro and reduces leukemia progression in vivo. At the molecular level, Vc downregulates an enzyme of serine synthesis named D-3-phosphoglycerate dehydrogenase (PHGDH), as well as BCL2, an anti-apoptotic gene. Over-expression of PHGDH reverses the Vc-enhanced anti-leukemic effect of DZNep in AML cells. Therefore, our findings provide an effective approach to reduce the resistance against epigenetic treatment by Vc, which shows a potential improvement of their combination in AML patients.  相似文献   

19.
Modification of prototype NK1 antagonist 2 resulted in the synthesis of a series of simple amides 6 and retroamides 9. These compounds were shown to be potent and orally active NK1 antagonists.  相似文献   

20.
The synthesis of methylmercury by Desulfovibrio desulfuricans LS was investigated on the basis of 14C incorporation from precursors and the measurement of relevant enzyme activities in cell extracts. The previously observed incorporation of C-3 from serine into methylmercury was confirmed by measurement of relatively high activities of serine hydroxymethyltransferase and other enzymes of this pathway. High rates of label incorporation into methylmercury from H14COO- and H14CO3- prompted the assay of enzymes of the acetyl coenzyme A (CoA) synthase pathway. These enzymes were found to be present but at activity levels much lower than those reported for acetogens. Propyl iodide inhibited methylmercury and acetyl-CoA syntheses to similar extents, and methylmercury synthesis was found to compete with acetyl-CoA synthesis for methyl groups. On the basis of these findings, we propose that in methylmercury synthesis by D. desulfuricans LS the methyl group is transferred from CH3-tetrahydrofolate via methylcobalamin. The methyl group may originate from C-3 of serine or from formate via the acetyl-CoA synthase pathway. These pathways are not unique to D. desulfuricans LS, and thus the ability of this bacterium to methylate mercury is most likely associated with the substrate specificity of its enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号