首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.  相似文献   

2.
3.
4.
5.
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral‐based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol‐resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on‐target effect that researchers need to be aware of when using lentiviral vectors for genome editing.  相似文献   

6.
D A Spandidos  M Riggio 《FEBS letters》1986,203(2):169-174
We have used a short-term transfection technique, in which we monitor the ability of DNA fragments to induce the expression of the chloramphenicol acetyltransferase (CAT) gene in rat 208F fibroblast cells. Using appropriate vectors we have assayed for promoter or enhancer activity of the 0.8 kb SstI fragment located within the 5'-flanking sequences of the first coding exon of the human T24 and normal Ha-ras1 genes. We find that this fragment contains promoter and enhancer activities in both the normal and the T24 Ha-ras1 gene.  相似文献   

7.
8.
9.
10.
Hepatocyte-specific gene expression from integrated lentiviral vectors   总被引:2,自引:0,他引:2  
BACKGROUND: For many applications, efficient gene therapy will require long-term, organ-specific therapeutic gene expression. Lentiviral vectors based on HIV-1 are promising gene delivery vehicles due to their ability to integrate transgenes into non-dividing cells. Many experimental vectors express transgenes under the control of the cytomegalovirus (CMV) immediate-early gene promoter. Although this promoter directs strong gene expression in vitro, it may be shut off rapidly in vivo. This study explores the potential of HIV-1-based vectors to transduce hepatocytes and compares gene expression from different promoters in integrated vectors. METHODS: HIV-1-based vector plasmids expressing the green fluorescent protein (GFP) under the control of the CMV promoter, the alpha-1 antitrypsin gene promoter or promoters derived from the hepatitis B virus (HBV) genome were used to compare expression in transfected and transduced cell lines. RESULTS: Hepatocyte cell lines differed strikingly in their transfectability. Transduction with replication-deficient HIV-1-based vector particles incorporating the different promoter elements was uniformly effective in hepatocyte and non-hepatocyte lines. However, in hepatocytes, only the CMV, alpha-1 antitrypsin and HBV core but not HBV surface promoters were able to produce GFP expression. Addition of the HBV enhancer 2 element improved the transducing ability of the HBV surface promoter and suppressed expression in non-hepatocytes increasing specificity for hepatocytes. CONCLUSIONS: Integrated lentiviral vectors can be used to direct transgene expression in liver cells both promiscuously and specifically. Promoters derived from the alpha-1 antitrypsin gene or HBV are alternatives to the CMV promoter. Inclusion of the HBV enhancer 2 permits strong liver-specific gene expression in vitro.  相似文献   

11.
12.
BACKGROUND: The potential of lentiviral vectors for clinical gene therapy has not yet been evaluated. One of the reasons is the cytotoxicity of lentiviral packaging genes which makes the generation of stable producer cell lines difficult. Therefore, a novel packaging system for lentiviral vectors based on transient expression of packaging genes by recombinant adenoviruses was developed. METHODS: Adenoviral vectors expressing VSV-G, codon-optimized HIV-1 gag-pol, and codon-optimized SIV gag-pol under the control of a tetracycline-regulatable promoter (adenoviral lenti-pack vectors) were constructed and the production levels of this vector system were evaluated. RESULTS: The generated adenoviral lenti-pack vectors could be grown to high titers when transgene expression was suppressed and no evidence for instabilities was obtained. Cells stably transfected with a SIV-based vector construct were converted into lentiviral vector producer cells by infection with the adenoviral lenti-pack vectors. Lentiviral vector titers obtained were as high as vector titers obtained by transient cotransfection experiments. A protocol was developed that allowed preparation of lentiviral vector stocks with undetectable levels of contaminating adenoviral lenti-pack vectors. CONCLUSIONS: The adenoviral lenti-pack vectors described should provide a convenient alternative approach to inducible packaging cell lines for large-scale lentiviral vector production. Transient expression of cytotoxic lentiviral packaging genes by the adenoviral lenti-pack vectors circumvents loss of titers during prolonged culture of packaging cell lines. The design of the adenoviral lenti-pack vectors should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the lentiviral vector constructs that can be packaged.  相似文献   

13.
14.
15.
16.
17.
18.
HO-1 (heme oxygenase-1) is an inducible microsomal enzyme that catalyzes the degradation of pro-oxidant heme. The goal of this study was to characterize a minimal enhancer region within the human HO-1 gene and delineate its role in modulating HO-1 expression by participation with its promoter elements in renal epithelial cells. Deletion analysis and site-directed mutagenesis identified a 220-bp minimal enhancer in intron 1 of the HO-1 gene, which regulates hemin-mediated HO-1 gene expression. Small interfering RNA, decoy oligonucleotides, site-directed mutagenesis, and chromatin immunoprecipitation assays confirmed the functional interaction of Sp1 with a consensus binding sequence within the 220-bp region. Mutations of regulatory elements within the −4.5 kb promoter region (a cyclic AMP response and a downstream NF-E2/AP-1 element, both located at −4.0 kb, and/or an E-box sequence located at −44 bp) resulted in the loss of enhancer activity. A chromosome conformation capture assay performed in human renal epithelial (HK-2) cells demonstrated hemin-inducible chromatin looping between the intronic enhancer and the −4.0 kb promoter region in a time-dependent manner. Restriction digestion with ApaLI (which cleaves the 220-bp enhancer) led to a loss of stimulus-dependent chromatin looping. Sp1 small interfering RNA and mithramycin A, a Sp1 binding site inhibitor, resulted in loss of the loop formation between the intronic enhancer and the distal HO-1 promoter by the chromosome conformation capture assay. These results provide novel insight into the complex molecular interactions that underlie human HO-1 regulation in renal epithelial cells.  相似文献   

19.
20.
In recent years, lentiviral expression systems have gained an unmatched reputation among the gene therapy community for their ability to deliver therapeutic transgenes into a wide variety of difficult-to-transfect/transduce target tissues (brain, hematopoietic system, liver, lung, retina) without eliciting significant humoral immune responses. We have cloned a construction kit-like self-inactivating lentiviral expression vector family which is compatible to state-of-the-art packaging and pseudotyping technologies and contains, besides essential cis-acting lentiviral sequences, (i) unparalleled polylinkers with up to 29 unique sites for restriction endonucleases, many of which recognize 8 bp motifs, (ii) strong promoters derived from the human cytomegalovirus immediate-early promoter (PhCMV) or the human elongation factor 1α (PhEF1α), (iii) PhCMV– or PPGK– (phosphoglycerate kinase promoter) driven G418 resistance markers or fluorescent protein-based expression tracers and (iv) tricistronic expression cassettes for coordinated expression of up to three transgenes. In addition, we have designed a size-optimized series of highly modular lentiviral expression vectors (pLenti Module) which contain, besides the extensive central polylinker, unique restriction sites flanking any of the 5′U3, R-U5-ψ+-SD, cPPT-RRE-SA and 3′LTRΔU3 modules or placed within the 5′U3 (–78 bp) and 3′LTRΔU3 (8666 bp). pLentiModule enables straightforward cassette-type module swapping between lentiviral expression vector family members and facilitates the design of Tat-independent (replacement of 5′LTR by heterologous promoter elements), regulated and self-excisable proviruses (insertion of responsive operators or LoxP in the 3′LTRΔU3 element). We have validated our lentiviral expression vectors by transduction of a variety of insect, chicken, murine and human cell lines as well as adult rat cardiomyocytes, rat hippocampal slices and chicken embryos. The novel multi-purpose construction kit-like vector series described here is compatible with itself as well as many other (non-viral) mammalian expression vectors for straightforward exchange of key components (e.g. promoters, LTRs, resistance genes) and will assist the gene therapy and tissue engineering communities in developing lentiviral expression vectors tailored for optimal treatment of prominent human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号