首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.

Purpose

The aim of this study was to design a method of radionuclide for imaging and therapy of nasopharyngeal carcinoma (NPC) using the transferred human sodium/iodide symporter (hNIS) gene.

Methods

A stable NPC cell line expressing hNIS was established (CNE-2-hNIS). After 131I treatment, we detected proliferation and apoptosis of NPC cells, both in vitro and vivo. In vivo, the radioactivity of different organs of nude mice was counted and 99mTc imaging using SPECT was performed. The apparent diffusion coefficient (ADC) value changes of tumor xenografts were observed by diffusion-weighted magnetic resonance imaging (DW-MRI) within 6–24 days of 131I treatment. The correlation of ADC changes with apoptosis and proliferation was investigated. Post-treatment expression levels of P53, Bax, Bcl-2, Caspase-3, and Survivin proteins were detected by western blotting.

Results

131I uptake was higher in CNE-2-hNIS than in CNE-2 cells. The proliferation and apoptosis rate decreased and increased respectively both in vitro and vivo in the experimental group after 131I treatment. The experimental group tumors accumulated 99mTc in vivo, leading to a good visualization by SPECT. DW-MRI showed that ADC values increased in the experimental group 6 days after treatment, while ADC values were positively and negatively correlated with the apoptotic and Ki-67 proliferation indices, respectively. After treatment, CNE-2-hNIS cells up-regulated the expression of P53 and Survivin proteins and activated Caspase-3, and down-regulated the expression of Bcl-2 proteins.

Conclusions

The radionuclide imaging and therapy technique for NPC hNIS-transfected cell lines can provide a new therapy strategy for monitoring and treatment of NPC.  相似文献   

2.

Introduction

Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS.

Methods

GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide 131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP) and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via 124I-positron emission tomography (PET). Detection of systemic administration of virus was investigated with both 124I-PET and 99m-technecium gamma-scintigraphy.

Results

GLV-1h153 successfully facilitated time-dependent intracellular uptake of 131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05). In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 109 plaque-forming unit (PFU)/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82±0.46 (P<0.05) 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via 124I-PET and 99m-technecium-scintigraphy.

Conclusion

GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic cancer cells, facilitating detection by PET with both intratumoral and systemic administration. Therefore, GLV-1h153 is a promising candidate for the noninvasive imaging of virotherapy and warrants further study into longterm monitoring of virotherapy and potential radiocombination therapies with this treatment and imaging modality.  相似文献   

3.

Background

Despite the presence of papillary structures and papillary tumors in humans, the mechanism of papillae formation is unknown. We describe herein a novel role for Niemann-Pick disease type 2C (NPC2) protein, a cholesterol binding protein in the lysosome, in papillae formation.

Methodology/Principal Finding

We examined NPC2 protein expression in surgical samples of papillary tissues by immunohistochemical stain, and all papillary tissues expressed NPC2 protein in the epithelium. To examine our hypothesis of NPC2 protein-mediated papillae formation, we carried out xenograft experiments using wild H460 cells (large cell lung carcinoma cell line) that constitutively expressed abundant NPC2 protein and NPC2 protein-depleted H460 cells by NPC2 shRNA. The xenografts of wild H460 cells and empty shRNA vector cells showed distinct papillae formation, whereas NPC2 protein-depleted H460 cells displayed markedly reduced or no papillae. Since all papillary tissues have open spaces we examined whether NPC2 protein might also contribute to the creation of open spaces. The TUNEL assay in the xenografts of wild and empty shRNA vector H460 cells showed massive cell death, and NPC2 protein-depleted cells displayed minimal cell death. Measurement of caspase 3/7 activities in cultured H460 cells supported NPC2 protein-mediated apoptotic cell death. The presence of excess NPC2 protein, however, did not always produce papillae as seen in the xenografts of CHO cells that were stably transfected with NPC2.

Conclusions/Significance

The NPC2 protein of certain cells forms papillae coupled with apoptosis that creates open space. This protein may have future applications to modulate papillae formation and papillary growth in tumor tissues.  相似文献   

4.

Background

Based on our recent microarray analysis, we found that miR-145 was obviously downregulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its function and mechanism involving in NPC development and progression.

Methods

Quantitative RT-PCR was used to detect miR-145 expression in NPC cell lines and clinical samples. Wound healing, Transwell migration and invasion, three-dimension spheroid invasion assays, and lung metastasis model were performed to test the migratory, invasive, and metastatic ability of NPC cells. Luciferase reporter assay, quantitative RT-PCR, and Western blotting were used to verify the target of miR-145.

Results

MiR-145 was obviously decreased in NPC cell lines and clinical samples (P<0.01). Ectopic overexpression of miR-145 significantly inhibited the migratory and invasive ability of SUNE-1 and CNE-2 cells. In addition, stably overexpressing of miR-145 in SUNE-1 cells could remarkably restrain the formation of metastatic nodes in the lungs of mice. Furthermore, fascin actin-bundling protein 1 (FSCN1) was verified as a target of miR-145, and silencing FSCN1 with small RNA interfering RNA could suppress NPC cell migration and invasion.

Conclusions

Our findings demonstrated that miR-145 function as a tumor suppressor in NPC development and progression via targeting FSCN1, which could sever as a potential novel therapeutic target for patients with NPC.  相似文献   

5.

Purpose

To develop a superior VAChT imaging probe for SPECT, radiolabeled (-)-OIDV and (+)-OIDV were isolated and investigated for differences in their binding affinity and selectivity to VAChT, as well as their in vivo activities.

Procedures

Radioiodinated o-iodo-trans-decalinvesamicol ([125I]OIDV) has a high binding affinity for vesicular acetylcholine transporter (VAChT) both in vitro and in vivo. Racemic [125I]OIDV was separated into its two optical isomers (-)-[125I]OIDV and (+)-[125I]OIDV by HPLC. To investigate VAChT binding affinity (Ki) of two OIDV isomers, in vitro binding assays were performed. In vivo biodistribution study of each [125I]OIDV isomer in blood, brain regions and major organs of rats was performed at 2,30 and 60 min post-injection. In vivo blocking study were performed to reveal the binding selectivity of two [125I]OIDV isomers to VAChT in vivo. Ex vivo autoradiography were performed to reveal the regional brain distribution of two [125I]OIDV isomers and (-)-[123I]OIDV for SPECT at 60 min postinjection.

Results

VAChT binding affinity (Ki) of (-)-[125I]OIDV and (+)-[125I]OIDV was 22.1 nM and 79.0 nM, respectively. At 2 min post-injection, accumulation of (-)-[125I]OIDV was the same as that of (+)-[125I]OIDV. However, (+)-[125I]OIDV clearance from the brain was faster than (-)-[125I]OIDV. At 30 min post-injection, accumulation of (-)-[125I]OIDV (0.62 ± 0.10%ID/g) was higher than (+)-[125I]OIDV (0.46 ± 0.07%ID/g) in the cortex. Inhibition of OIDV binding showed that (-)-[125I]OIDV was selectively accumulated in regions known to express VAChT in the rat brain, and ex vivo autoradiography further confirmed these results showing similar accumulation of (-)-[125I]OIDV in these regions. Furthermore, (-)-[123I]OIDV for SPECT showed the same regional brain distribution as (-)-[125I]OIDV.

Conclusion

These results suggest that radioiodinated (-)-OIDV may be a potentially useful tool for studying presynaptic cholinergic neurons in the brain.  相似文献   

6.

Objective

This study explores a new, non-invasive imaging method for the specific diagnosis of insulinoma by providing an initial investigation of the use of 125I-labelled molecules of the glucagon-like peptide-1 (GLP-1) analogue liraglutide for in vivo and in vitro small-animal SPECT/CT (single-photon emission computed tomography/computed tomography) imaging of insulinomas.

Methods

Liraglutide was labelled with 125I by the Iodogen method. The labelled 125I-liraglutide compound and insulinoma cells from the INS-1 cell line were then used for in vitro saturation and competitive binding experiments. In addition, in a nude mouse model, the use of 125I-liraglutide for the in vivo small-animal SPECT/CT imaging of insulinomas and the resulting distribution of radioactivity across various organs were examined.

Results

The labelling of liraglutide with 125I was successful, yielding a labelling rate of approximately 95% and a radiochemical purity of greater than 95%. For the binding between 125I-liraglutide and the GLP-1 receptor on the surface of INS-1 cells, the equilibrium dissociation constant (Kd) was 128.8±30.4 nmol/L(N = 3), and the half-inhibition concentration (IC50) was 542.4±187.5 nmol/L(N = 3). Small-animal SPECT/CT imaging with 125I-liraglutide indicated that the tumour imaging was clearest at 90 min after the 125I-liraglutide treatment. An examination of the in vivo distribution of radioactivity revealed that at 90 min after the 125I-liraglutide treatment, the target/non-target (T/NT) ratio for tumour and muscle tissue was 4.83±1.30(N = 3). Our study suggested that 125I-liraglutide was predominantly metabolised and cleared by the liver and kidneys.

Conclusion

The radionuclide 125I-liraglutide can be utilised for the specific imaging of insulinomas, representing a new non-invasive approach for the in vivo diagnosis of insulinomas.  相似文献   

7.

Background

Nasopharyngeal carcinoma (NPC) is known for its high metastatic potential and locoregional recurrence, although the molecular alterations that are driving NPC metastasis remain unclear at this time. This study aimed to examine the expression of fibulin-5 in NPC, correlate the results with clinicopathological variables and survival, and to investigate the role of fibulin-5 in human NPC cell lines.

Material and Methods

Standard semi-quantitative-RT-PCR, quantitative-RT-PCR, immunoblotting, and immunohistochemistry were used to investigate the mRNA and protein expression profiles of fibulin-5 in normal and NPC tissues. Immunohistochemistry of fibulin-5 was correlated with clinicopathological characteristics by univariate analyses. NPC cells overexpressing fibulin-5 or fibulin-5-siRNA cells were generated by stable transfection to characterize the molecular mechanisms of fibulin-5-elicited cell growth and metastasis.

Results

Our results demonstrated that fibulin-5 overexpression in NPC specimens and significantly correlated with advanced tumor metastasis indicating a poor 5-year overall survival. Fibulin-5 was mainly expressed in the nucleus in human NPC specimens and cell lines. Functionally, fibulin-5 overexpression yielded fast growth in NPC cells. In addition, fibulin-5 promotes cell metastasis in NPC cells through increased FLJ10540 and phosphor-AKT activity. In contrast, siRNA depletion of fibulin-5 suppressed FLJ10540 expression and phosphor-AKT activity. Suppression of either fibulin-5 or FLJ10540 can cause significant inhibition with regards to cell motility in NPC cells. Finally, immunohistochemical analysis of human aggressive NPC specimens showed a significant and positive correlation between fibulin-5 and FLJ10540 expression.

Conclusion

Higher fibulin-5 expression is not only an important indicator of poor survival, but also contributes to the development of new therapeutic strategies in the FLJ10540/AKT pathway for NPC treatment.  相似文献   

8.

Background

Rapidly growing evidence suggests that microRNAs (miRNAs) are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC.

Methods

The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models.

Results

50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501), 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323) and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1) and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1).

Conclusions

Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.  相似文献   

9.

Background

Glioblastoma multiforme (GBM), the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ) is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ.

Methodology/Principal Findings

Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ.

Conclusions/Significance

These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.  相似文献   

10.

Objectives

Recent findings suggest that in response to repair-to-injury bone marrow mesenchymal stem cells (BMSCs) participate in the process of angiogenesis. It is unclear what role BMSCs play in the structure of the vessel wall. In present study, we aimed to determine whether BMSCs had the capacity of endothelial cells (ECs).

Methods

BMSCs were separated and cultured. FACS and RT-PCR analysis confirmed the gene expression phenotype. The capacity of migration and adhesion and the ultrastructure of BMSCs were examined. The effect of BMSCs transplantation on the vascular repair was investigated in a murine carotid artery-injured model.

Results

BMSCs could express some markers and form the tube-like structure. The migration and adhesion capacity of BMSCs increased significantly after stimulated. In addition, BMSCs had the intact cell junction. In vivo the local transfer of BMSCs differentiated into neo-endothelial cells in the injury model for carotid artery and contributed to the vascular remodeling.

Conclusion

These results showed that BMSCs could contribute to neointimal formation for vascular lesion and might be associated with the differentiation into ECs, which indicated the important therapeutic implications for vascular diseases.  相似文献   

11.

Purpose

Radionuclide reporter gene imaging holds promise for non-invasive monitoring of transplanted stem cells. Thus, the feasibility of utilizing recombinant baculoviruses carrying the sodium iodide symporter (NIS) reporter gene in monitoring stem cell therapy by radionuclide imaging was explored in this study.

Methods

Recombinant baculoviruses carrying NIS and green fluorescent protein (GFP) reporter genes (Bac-NIS and Bac-GFP) were constructed and used to infect human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). Infection efficiency, total fluorescence intensity and duration of transgene expression were determined by flow cytometry. Cytotoxicity/proliferative effects of baculovirus on hUCB-MSCs were assessed using CCK-8 assays. 125I uptake and perchlorate inhibition assays were performed on Bac-NIS-infected hUCB-MSCs. Radionuclide imaging of mice transplanted with Bac-NIS-infected hUCB-MSCs was performed by NanoSPECT/CT imaging.

Results

Infection efficiencies of recombinant baculovirus in hESCs, hiPSCs and hUCB-MSCs increased with increasing MOIs (27.3%, 35.8% and 95.6%, respectively, at MOI = 800). Almost no cytotoxicity and only slight effects on hUCB-MSCs proliferation were observed. Obvious GFP expression (40.6%) remained at 8 days post-infection. The radioiodide was functionally accumulated by NIS gene products and specifically inhibited by perchlorate (ClO4 -). Radioiodide uptake, peaking at 30 min and gradually decreasing over time, significantly correlated with hUCB-MSCs cell number (R2 = 0.994). Finally, radionuclide imaging showed Bac-NIS-infected hUCB-MSCs effectively accumulated radioiodide in vivo, which gradually weakened over time.

Conclusion

Baculovirus as transgenic vector of radionuclide reporter gene imaging technology is a promising strategy for monitoring stem cell transplantation therapy.  相似文献   

12.

Purpose

PP2A is a serine/threonine phosphatase critical to physiological processes, including apoptosis. Cell penetrating peptides are molecules that can translocate into cells without causing membrane damage. Our goal was to develop cell-penetrating fusion peptides specifically designed to disrupt the caspase-9/PP2A interaction and evaluate their therapeutic potential in vitro and in vivo.

Experimental Design

We generated a peptide containing a penetrating sequence associated to the interaction motif between human caspase-9 and PP2A (DPT-C9h), in order to target their association. Using tumour cell lines, primary human cells and primary human breast cancer (BC) xenografts, we investigated the capacity of DPT-C9h to provoke apoptosis in vitro and inhibition of tumour growth (TGI) in vivo. DPT-C9h was intraperitonealy administered at doses from 1 to 25 mg/kg/day for 5 weeks. Relative Tumour Volume (RTV) was calculated.

Results

We demonstrated that DPT-C9h specifically target caspase-9/PP2A interaction in vitro and in vivo and induced caspase-9-dependent apoptosis in cancer cell lines. DPT-C9h also induced significant TGI in BC xenografts models. The mouse-specific peptide DPT-C9 also induced TGI in lung (K-Ras model) and breast cancer (PyMT) models. DPT-C9h has a specific effect on transformed B cells isolated from chronic lymphocytic leukemia patients without any effect on primary healthy cells. Finally, neither toxicity nor immunogenic responses were observed.

Conclusion

Using the cell-penetrating peptides blocking caspase-9/PP2A interactions, we have demonstrated that DPT-C9h had a strong therapeutic effect in vitro and in vivo in mouse models of tumour progression.  相似文献   

13.

Background

Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response.

Aims

The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells.

Methods

Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells.

Results

High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis.

Conclusion

High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.  相似文献   

14.
15.

Introduction

A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel.

Methods

In vivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2.

Results

Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08).

Conclusions

Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.  相似文献   

16.

Background

Contrast-induced nephropathy (CIN) is the third leading cause of hospital-acquired acute renal failure. Oxidative stress, apoptosis and inflammation play crucial roles in CIN. Renalase is a newly discovered monoamine oxidase from the kidney. We hypothesize that renalase could protect against CIN through anti-oxidation, anti-inflammation and anti-apoptosis pathways.

Methods

We tested our hypothesis in vivo with a rat model of Ioversol-induced CIN and in vitro. Sprague-Dawley rats were divided into 4 groups (n = 6 per group): control group, Ioversol group (rats subjected to Ioversol-induced CIN), Ioversol plus vehicle group (CIN rats pretreated with vehicle) and Ioversol plus renalase group (CIN rats pretreated with 2 mg/kg recombinant renalase). HK2 cells were treated with Ioversol or H2O2.

Results

The results showed that pretreatment with renalase attenuated the deterioration of renal function, tubular necrosis, oxidative stress, apoptosis and inflammation (P<0.05). Furthermore, renalase protected HK2 cells against the cytotoxicity of Ioversol and suppressed Caspase-3 activity, oxidative stress and apoptosis induced by H2O2.

Conclusion

Recombinant renalase protected CIN in rats through anti-oxidation, anti-apoptosis and anti-inflammation mechanisms.  相似文献   

17.

Background

Acute respiratory distress syndrome (ARDS) is a severe and life-threatening acute lung injury (ALI) that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK) pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred)-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK)-MAPK pathway, in lipopolysaccharide (LPS)-induced acute lung inflammation.

Methods

Wild-type (WT) mice and Spred-2−/− mice were exposed to intratracheal LPS (50 µg in 50 µL PBS) to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2−/− mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells.

Results

LPS-induced acute lung inflammation was significantly exacerbated in Spred-2−/− mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2−/− mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells.

Conclusions

The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls the development of LPS-induced lung inflammation by negatively regulating the ERK-MAPK pathway. Thus, Spred-2 may represent a therapeutic target for the treatment of ALI.  相似文献   

18.

Objective

Tolerogenic dendritic cells (tDCs) are immunosuppressive cells with potent tolerogenic ability and are promising immunotherapeutic tools for treating rheumatoid arthritis (RA). However, it is currently unknown whether allogeneic tDCs (allo-tDCs) induce tolerance in RA, and whether the numbers of adoptively transferred allo-tDCs, or the requirement for pulsing with relevant auto-antigens are important.

Methods

tDCs were derived from bone marrow precursors of C57BL/B6 mice, which were induced in vitro by GM-CSF, IL-10 and TGF-β1. Collagen-induced arthritis (CIA) was modeled in D1 mice by immunization with type II collagen (CII) to test the therapeutic ability of allo-tDCs against CIA. Clinical and histopathologic scores, arthritic incidence, cytokine and anti-CII antibody secretion, and CD4+Th subsets were analyzed.

Results

tDCs were characterized in vitro by a stable immature phonotype and a potent immunosuppressive ability. Following adoptive transfer of low doses (5×105) of CII-loaded allo-tDCs, a remarkable anti-arthritic activity, improved clinical scores and histological end-points were found. Serological levels of inflammatory cytokines and anti-CII antibodies were also significantly lower in CIA mice treated with CII-pulsed allo-tDCs as compared with allo-tDCs. Moreover, treatment with allo-tDCs altered the proportion of Treg/Th17 cells.

Conclusion

These findings suggested that allo-tDCs, especially following antigen loading, reduced the severity of CIA in a dose-dependent manner. The dampening of CIA was associated with modulated cytokine secretion, Treg/Th17 polarization and inhibition of anti-CII secretion. This study highlights the potential therapeutic utility of allo-tDCs in autoimmune arthritis and should facilitate the future design of allo-tDC immunotherapeutic strategies against RA.  相似文献   

19.
Hsieh CH  Shyu WC  Chiang CY  Kuo JW  Shen WC  Liu RS 《PloS one》2011,6(9):e23945

Background

Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear.

Methodology

Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression.

Principal Findings

Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment.

Conclusions

Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.  相似文献   

20.

Background

Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear.

Methods

Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections.

Results

In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity.

Conclusion

In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号