首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of type 2 diabetes. Evidence is emerging that nutriment-induced β-cell dysfunction could be related to indirect induction of a state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an inflammatory response in pancreatic islets leading to ?-cell dysfunction. In the hyperphagic obese insulin resistant male Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the expression of their receptors in pancreatic tissue and β-cells. Our main findings concern intra-islet pro-inflammatory cytokines from fa/fa rats: IL-1β, IL-6 and TNFα expressions were increased; IL-1R1 was also over-expressed with a cellular redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning β-cell proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1β and IL-1R1 increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible autocrine regulation of β-cell function by IL-1β. These results support the hypothesis that pancreatic islets from prediabetic fa/fa rats undergo an inflammatory process. That the latter could contribute to β-cell hyperactivity/proliferation and possibly lead to progressive β-cell failure in these animals, deserves further investigations.  相似文献   

2.
3.
4.
Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.  相似文献   

5.
6.

Aim

This study aimed to examine the causal relationship between adipokines released from visceral fat and pancreatic β-cell dysfunction in the state of obesity inflammation.

Main methods

Adipose tissue and adipocyte conditioned medium were obtained from epididymal fat of B6 mice on regular or high fat diet for 16 weeks. The latter were classified into two groups: overweight (OW, 40 ± 2 g) and obese (OB, 50 ± 2 g). Isolated mouse islets and NIT-1 cells were used to evaluate β-cell function.

Key findings

Fasting glucose, leptin, and interleukin-6 levels were increased in OW mice and were further elevated in OB mice. Adipocyte size and number of adipose macrophage infiltrations showed a similar trend. The augmentation of homeostasis model assessment of insulin resistance, islet hyperplasia and macrophage infiltration was noted only in OB mice. The stimulation index was lower, but reactive oxygen species production was higher in islets isolated from OB mice than from controls. In epididymal fat conditioned medium, the increases in leptin, IL-6 and TNF-α production in OW mice were further elevated in OB mice except TNF-α. Adipose tissue conditioned medium suppressed the stimulation index of islets isolated from B6 mice but not from db/db mice. The suppressive effect was also reversed by co-treatment with N-acetylcysteine or NS-398 (a selective cyclooxygenase-2 inhibitor).

Significance

A markedly elevated leptin production from inflamed visceral fat could deteriorate β-cell function via leptin receptor-mediated oxidative stress and cyclooxygenase-2 activation in the development of obesity.  相似文献   

7.
As a result of chronic exposure to high levels of free fatty acids, glucose and inflammatory mediators β-cell apoptosis occurs at the end stage of obesity-associated type 2 diabetes (T2D). One potentially deleterious molecule for β-cell function associated with T2D and obesity in humans is macrophage migration inhibitory factor (MIF). Therefore, the aim of this study was to explore MIF expression in vivo during development of obesity and insulin resistance in high-fat diet (HFD)-fed C57BL/6 mice and whether MIF inhibition could affect β-cell apoptosis and dysfunction induced by palmitic acid (PA) in vitro. Indeed, increase in systemic and locally produced MIF correlated well with the weight gain, triglyceride upregulation, glucose intolerance and insulin resistance, which developed in HFD-fed mice. In in vitro settings PA dose-dependently induced MIF secretion before apoptosis development in islets. Further, mif gene deletion, mRNA silencing or protein inhibition rescued β-cells from PA-induced apoptosis as measured by MTT assay and histone-DNA enzyme linked immuno sorbent assay. Protection from induced apoptosis was mediated by altered activation of caspase pathway and correlated with changes in the level of Bcl-2 family members. Further, MIF inhibition conveyed a significant resistance to PA-induced downregulation of insulin and PDX-1 expression and ATP content. However, β-cell function was not entirely preserved in the absence of MIF judging by low glucose oxidation and depolarized mitochondrial membrane. In conclusion, the observed considerable preservation of β-cells from nutrient-induced apoptosis might implicate MIF as a potential therapeutic target in the later stage of obesity-associated T2D.  相似文献   

8.
9.
10.
确定广叶绣球菌β-D-葡聚糖对巨噬细胞RAW264.7的免疫调节作用受体,探索广叶绣球菌β-D-葡聚糖的免疫调节机制。采用MTT法测定不同浓度广叶绣球菌β-D-葡聚糖对巨噬细胞RAW264.7增殖活力的影响,筛选出促进巨噬细胞增殖能力最强的浓度。用筛选出的β-D-葡聚糖浓度作用巨噬细胞RAW264.7;TLR4抗体和TLR2抗体分别作用巨噬细胞RAW264.7 1h,再用含有β-D-葡聚糖的细胞培养液培养。收集细胞培养上清和细胞,检测细胞培养上清中NO、IL-6、TNF-α、IFN-β的生成量;提取细胞内总RNA,采用RT-PCR测定巨噬细胞TLR4 mRNA表达量;提取巨噬细胞总蛋白,采用蛋白免疫印迹western blot测定TLR4的蛋白表达。广叶绣球菌β-D-葡聚糖能够促进巨噬细胞RAW264.7增殖,增加NO、IL-6、TNF-α、IFN-β的生成量,提高TLR4 mRNA表达和蛋白表达,差异极显著(P<0.01)。TLR4抗体作用细胞后,NO、IL-6、TNF-α、IFN-β的生成量明显下降,差异极显著(P<0.01)。TLR2抗体作用细胞后,NO、IL-6、TNF-α、IFN-β的生成量下降,但差异不显著。广叶绣球菌β-D-葡聚糖可以通过细胞表面受体TLR4激活信号转导通路,增强下游细胞因子的释放,从而调节巨噬细胞RAW264.7的免疫功能。TLR2可能不是广叶绣球菌β-D-葡聚糖的免疫受体。  相似文献   

11.
The effects of extremely low frequency electromagnetic fields (ELF-EMF) on human health remain unclear. It has been reported that ELF-EMF may modulate the innate immune response to microorganisms in animal models and mammalian cell-lines. With the recently gained insight in innate immune signaling and the discovery of pattern recognition, we aim to study whether ELF-EMF modulates innate inflammatory signaling pathways. We used human peripheral blood mononuclear cells (PBMCs), isolated from blood from healthy volunteers, which we stimulated with specific TLR2 and TLR4 ligands, and with several microorganisms. The cells were subsequently exposed in B(dc)=3 μT to a highly controlled and standardized ELF-EMF signal (20-5000Hz, B(ac)=5 μT, 30 min) and cytokine production was measured at different time points after stimulation. No significant difference in immune response, as reflected by IL-1β, IL-6, TNFα, IL-8 and IL-10 production, could be detected after stimulation with LPS (TLR4 ligand), Pam3Cys (TLR2 ligand) or a panel of heat killed microorganisms: Mycobacterium tuberculosis, Salmonella typhimurium, Candida albicans, Aspergillus fumigatus and Staphylococcus aureus (multiple TLR ligands). We therefore conclude that under our experimental conditions, ELF-EMF does not modulate the innate immune response of human primary cells after TLR stimulation in vitro.  相似文献   

12.
13.
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.  相似文献   

14.
Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D.  相似文献   

15.
《Epigenetics》2013,8(8):841-852
Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular mechanisms by which these factors trigger β-cell dysfunction and diabetes is still limited. Recent discoveries raise the possibility that epigenetic changes in response to environmental stimuli may play an important role in the development of diabetes. In this paper, we review emerging knowledge regarding epigenetic mechanisms that may be involved in β-cell dysfunction and pathogenesis of diabetes, including the role of nutrition, oxidative stress and inflammation. We will mainly focus on the role of DNA methylation and histone modifications but will also briefly review data on miRNA effects on the pancreatic islets. Further studies aimed at better understanding how epigenetic regulation of gene expression controls β-cell function may reveal potential therapeutic targets for prevention and treatment of diabetes.  相似文献   

16.
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.  相似文献   

17.
18.
19.
Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.  相似文献   

20.
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells--which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号