首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mycobacterium tuberculosis is a facultative intracellular pathogen, and the ability of this bacterium to survive and to grow inside macrophages is central to its virulence. Multiple strategies are employed by M. tuberculosis to ensure survival in macrophages, including secretion of several proteins, which are good candidates to be virulence factors, drug targets for disease intervention, and vaccine antigens. However, some M. tuberculosis secreted proteins do not appear to play any role in the growth or survival of the bacterium in its mammalian host. Among these proteins are three putative cellulose-targeting proteins encoded by the genes Rv0062, Rv1090, and Rv1987. It has been previously shown that Rv0062 encodes an active cellulase. Here we report that Rv1090 and Rv1987 also encode functional proteins. Rv1090 is able to hydrolyze barley β-glucan while Rv1987 displays cellulose-binding activity on filter paper and on microcrystalline cellulose (Avicel). Collectively, these observations point toward a unique unknown relationship between M. tuberculosis and a cellulose-containing host. We hypothesize that amoeba could be such hosts.  相似文献   

3.
A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naïve macrophages produced an antimicrobial effect, but only if naïve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naïve macrophages. The antimicrobial effect of naïve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naïve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naïve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis.  相似文献   

4.
Hartman ML  Kornfeld H 《PloS one》2011,6(11):e27972
A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with na?ve macrophages produced an antimicrobial effect, but only if na?ve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the na?ve macrophages. The antimicrobial effect of na?ve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the na?ve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of na?ve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which promotes nitric oxide-dependent antimicrobial activity against bacilli in autolysosomes of heavily infected macrophages. This cooperative, innate antimicrobial interaction may limit the maximal growth rate of M. tuberculosis prior to the expression of adaptive immunity in pulmonary tuberculosis.  相似文献   

5.
Bioremediation of soils contaminated with wood preservatives containing polycyclic aromatic hydrocarbons (PAHs) is desired because of their toxic, mutagenic, and carcinogenic properties. Creosote wood preservative–contaminated soils at the Champion International Superfund Site in Libby, Montana currently undergo bioremediation in a prepared-bed land treatment unit (LTU) process. Microbes isolated from these LTU soils rapidly mineralized the 14C-labeled PAH pyrene in the LTU soil. Gram staining, electron microscopy, and 16S rDNA-sequencing revealed that three of these bacteria, JLS, KMS, and MCS, were Mycobacterium strains. The phylogeny of the 16S rDNA showed that they were distinct from other Mycobacterium isolates with PAH-degrading activities. Catalase and superoxide dismutase (SOD) isozyme profiles confirmed that each isolate was distinct from each other and from the PAH-degrading mycobacterium, Mycobacterium vanbaalenii sp. nov, isolated from a petroleum-contaminated soil. We find that dioxygenase genes nidA and nidB are present in each of the Libby Mycobacterium isolates and are adjacent to each other in the sequence nidB-nidA, an order that is unique to the PAH-degrading mycobacteria.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

6.

Background

IFN-γ is presently the only soluble immunological marker used to help diagnose latent Mycobacterium tuberculosis (M.tb) infection. However, IFN-γ is not available to distinguish latent from active TB infection. Moreover, extrapulmonary tuberculosis, such as tuberculous pleurisy, cannot be properly diagnosed by IFN-γ release assay. As a result, other disease- or infection-related immunological biomarkers that would be more effective need to be screened and identified.

Methodology

A panel of 41 soluble immunological molecules (17 cytokines and 24 chemokines) was tested using Luminex liquid array-based multiplexed immunoassays. Samples, including plasma and pleural effusions, from healthy donors (HD, n = 12) or patients with latent tuberculosis infection (LTBI, n = 20), pulmonary tuberculosis (TB, n = 12), tuberculous pleurisy (TP, n = 15) or lung cancer (LC, n = 15) were collected and screened for soluble markers. Peripheral blood mononuclear cells (PBMCs) and pleural fluid mononuclear cells (PFMCs) were also isolated to investigate antigen-specific immune factors.

Principal Findings

For the 41 examined factors, our results indicated that three patterns were closely associated with infection and disease. (1) Significantly elevated plasma levels of IL-2, IP-10, CXCL11 and CXCL12 were present in both patients with tuberculosis and in a sub-group participant with latent tuberculosis infection who showed a higher level of IFN-γ producing cells by ELISPOT assay compared with other latently infected individuals. (2) IL-6 and IL-9 were only significantly increased in plasma from active TB patients, and the two factors were consistently highly secreted after M.tb antigen stimulation. (3) When patients developed tuberculous pleurisy, CCL1, CCL21 and IL-6 were specifically increased in the pleural effusions. In particular, these three factors were consistently highly secreted by pleural fluid mononuclear cells following M.tb-specific antigen stimulation. In conclusion, our data imply that the specific secretion of soluble immunological factors, in addition to IFN-γ, may be used to evaluate M.tb infection and tuberculosis disease.  相似文献   

7.
8.
Mycobacterium tuberculosis-macrophage interactions are key to pathogenesis and clearance of these bacteria. Although interactions between M. tuberculosis-associated lipids and TLRs, non-TLRs, and opsonic receptors have been investigated, interactions of these lipids and infected macrophage lipid repertoire with lipid-sensing nuclear receptors expressed in macrophages have not been addressed. In this study, we report that M. tuberculosis-macrophage lipids can interact with host peroxisome proliferator-activated receptor γ and testicular receptor 4 to ensure survival of the pathogen by modulating macrophage function. These two lipid-sensing nuclear receptors create a foamy niche within macrophage by modulating oxidized low-density lipoprotein receptor CD36, phagolysosomal maturation block by induction of IL-10, and a blunted innate response by alternative polarization of the macrophages, which leads to survival of M. tuberculosis. These results also suggest possible heterologous ligands for peroxisome proliferator-activated receptor γ and testicular receptor 4 and are suggestive of adaptive or coevolution of the host and pathogen. Relative mRNA expression levels of these receptors in PBMCs derived from clinical samples convincingly implicate them in tuberculosis susceptibility. These observations expose a novel paradigm in the pathogenesis of M. tuberculosis amenable for pharmacological modulation.  相似文献   

9.
10.
Infections with non-tuberculous mycobacteria (NTM) are increasing, particularly among immune-compromised patients and those with damaged lungs. Mycobacterium tuberculosis complex (MTB) strains, however, remain the most common cause of mycobacterial infection. A rapid method of distinguishing MTB from NTM is required for correct diagnosis and tuberculosis management. We have developed an automated procedure based on thermally-assisted hydrolysis and methylation followed by gas chromatography–mass spectrometry (THM–GC–MS) and advanced chemometrics to differentiate MTB from NTM. We used early cultures of mycobacteria in this first step towards the direct identification of these bacteria in sputum using a hand-held portable device. To build a classification model, we used 44 strains including 15 MTB and 29 NTM. A matrix of the aligned dataset containing ~45,700 features (retention time/mass pairs) for the 44 observations was submitted to partial least squares discriminant analysis (PLS–DA). We could reduce the number of features down to 250 without compromising the accuracy of the model. Twenty different compounds were found through mass spectral interpretation of these 250 features. Some of these compounds have not been linked to tuberculosis before, others have been proposed previously as diagnostic biomarkers for this disease. We have built a final model based on our proposed biomarkers that performed with 95 % accuracy in distinguishing MTB from NTM in early cultures. Since all these biomarkers have been chemically identified, work can proceed towards the development of simpler, bed-side diagnostic tests to differentiate MTB from NTM in sputum.  相似文献   

11.
Deletions and the appearance of pseudogenes in pathways of carbon source utilisation and energy metabolism best explain the host-dependency and failure to culture Mycobacterium leprae axenically. From the genome sequence it is possible to predict that acetate and galactose cannot be used as carbon sources, while pyruvate can only be catabolised. Glycerol, glucose, and fatty acids could be used for glycolysis, the pentose cycle and -oxidation which are complete. Retrospective functional genomics – interpreting work before the completion of the genome project – supports the failure of M. leprae to use acetate as well as another prediction that metabolic flux from pyruvate to acetyl-CoA would be very low. However, the loss of a second icd gene (compared with M. tuberculosis), predicted to encode isocitrate dehydrogenase, did not diminish the specific activity of the enzyme. The genes for respiratory pathways are extremely limited, being present for oxidative phosphorylation as a result of electron transport only using FADH as an electron donor. In contrast, all the major biosynthetic pathways are complete except that M. leprae is a natural methionine auxotroph: this is predicted not to be attenuating, or explain host-dependency since methionine would be present in rich culture media.  相似文献   

12.
We report the synthesis of 5′-modified thymidines (16, 18, 21, 23) and 5,5′-bis-substituted 2′-deoxyuridine analogues (30, 47) as inhibitors of thymidine monophosphate kinase of Mycobacterium tuberculosis (TMPKmt). These analogues were evaluated for their capacity to inhibit TMPKmt and solely two 5′-modified thymidines were found to possess moderate inhibitory activity. In addition, a feasibility study of protecting groups for the 5-CH2OH moiety of 2′-deoxyuridines is described that enables to introduce the desired 5′-modification.  相似文献   

13.
There is now a considerable body of evidence to suggest that the phthiocerol-containing lipids, including the phenolic glycolipids, comprise the so-called “peribacillary substance”, “spherical droplets”, “foamy structures” and “capsular materials” ofMycobacterium leprae. Thus, the phthiocerol-containing lipid capsule may be directly responsible for the intracellular survival ofMycobacterium leprae.  相似文献   

14.
The rate of synthesis and degradation of phospholipids in Mycobacterium smegmatis ATCC 607, grown at 27° C and 37° C was studied by incorporation of 32P into phospholipids and chase of radioactivity of the pulse-labelled phospholipids. A relatively low rate of synthesis and degradation of phospholipids in cells growth at 27° C was observed as compared to those grown at 37° C. Phosphatidylethanolamine (PE) had the maximum turnover at 37° C. However, at 27° C, cardiolipin (CL) showed a turnover rate higher than PE. Phosphatidylinositol mannosides (PIMs) were metabolically more active at 37° C than at 27° C. The differences in metabolic activity of the phospholipids at the two temperatures have been discussed.  相似文献   

15.
Human immunodeficiency virus-1 (HIV-1) impairs tumor necrosis factor-α (TNF-α)-mediated macrophage apoptosis induced by Mycobacterium tuberculosis (Mtb). HIV Nef protein plays an important role in the pathogenesis of AIDS. We have tested the hypothesis that exogenous Nef is a factor that inhibits TNF-α production/apoptosis in macrophages infected with Mtb. We demonstrate that Mtb and Nef individually trigger TNF-α production in macrophages. However, TNF-α production is dampened when the two are present simultaneously, probably through cross-regulation of the individual signaling pathways leading to activation of the TNF-α promoter. Mtb-induced TNF-α production is abrogated upon mutation of the Ets, Egr, Sp1, CRE, or AP1 binding sites on the TNF-α promoter, whereas Nef-mediated promoter activation depends only on the CRE and AP1 binding sites, pointing to differences in the mechanisms of activation of the promoter. Mtb-dependent promoter activation depends on the mitogen-activated kinase (MAPK) kinase kinase ASK1 and on MEK/ERK signaling. Nef inhibits ASK1/p38 MAPK-dependent Mtb-induced TNF-α production probably by inhibiting binding of ATF2 to the TNF-α promoter. It also inhibits MEK/ERK-dependent Mtb-induced binding of FosB to the promoter. Nef-driven TNF-α production occurs in an ASK1-independent, Rac1/PAK1/p38 MAPK-dependent, and MEK/ERK-independent manner. The signaling pathways used by Mtb and Nef to trigger TNF-α production are therefore distinctly different. In addition to attenuating Mtb-dependent TNF-α promoter activation, Nef also reduces Mtb-dependent TNF-α mRNA stability probably through its ability to inhibit ASK1/p38 MAPK signaling. These results provide new insight into how HIV Nef probably exacerbates tuberculosis infection by virtue of its ability to dampen Mtb-induced TNF-α production.  相似文献   

16.

Background

Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive.

Methodology/Principal Findings

We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-α, IL-1β, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3β in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3β in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration.

Conclusions/Significance

These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.  相似文献   

17.
A series of halogenated sulfanilamides and halogenated benzolamide derivatives have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Mycobacterium tuberculosis, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the substitution pattern at the sulfanilamide moiety/fragment of the molecule. Best inhibitors were the halogenated benzolamides (KIs in the range of 0.12–0.45 μM) whereas the halogenated sulfanilamides were slightly less inhibitory (KIs in the range of 0.41–4.74 μM). This class of β-CA inhibitors may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug/extensive multi-drug resistance.  相似文献   

18.
Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.  相似文献   

19.
20.
It is well accepted that aging and HIV infection are associated with quantitative and functional changes of CMV-specific T cell responses. We studied here the expression of Mip-1β and the T cell maturation marker CD27 within CMVpp65-specific CD4+ and CD8+ T cells in relation to age, HIV and active Tuberculosis (TB) co-infection in a cohort of Tanzanian volunteers (≤16 years of age, n = 108 and ≥18 years, n = 79). Independent of HIV co-infection, IFNγ+ CMVpp65-specific CD4+ T cell frequencies increased with age. In adults, HIV co-infection further increased the frequencies of these cells. A high capacity for Mip-1β production together with a CD27low phenotype was characteristic for these cells in children and adults. Interestingly, in addition to HIV co-infection active TB disease was linked to further down regulation of CD27 and increased capacity of Mip-1β production in CMVpp65-specific CD4+ T cells. These phenotypic and functional changes of CMVpp65-specific CD4 T cells observed during HIV infection and active TB could be associated with increased CMV reactivation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号