首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND:

Genetic variation in the vitamin K epoxide reductase complex (VKORC1) and cytochrome P450 4F2 (CYP4F2) genes were found to be strongly associated with the oral anticoagulant (OA) dose requirement. The distribution of genetic variation in these two genes was found to show large inter- and intra-ethnic difference.

MATERIALS AND METHODS:

A total of 470 unrelated, healthy volunteers of South Indians of either sex (age: 18-60 years) were enrolled for the study. A 5 ml of venous blood was collected and the genomic deoxyribonucleic acid (DNA) was extracted by using phenol-chloroform extraction method. Real-time quantitative polymerase chain reaction (RT-PCR) method was used for genotyping.

RESULTS:

The variant allele frequencies of VKORC1 rs2359612 (T), rs8050894 (C), rs9934438 (T) and rs9923231 (A) were found to be 11.0%, 11.8%, 11.7% and 12.0%, respectively. The variant allele VKORC1 rs7294 was (80.1%) more frequent and the variant allele CYP4F2 * 3 was found to be 41.8% in South Indians. The allele, genotype and haplotype frequencies of VKORC1 and CYP4F2 gene were distinct from other compared HapMap populations (P < 0.0001).

CONCLUSION:

The findings of our study provide the basic genetic information for further pharmacogenetic based investigation of OA therapy in the population.  相似文献   

2.
We present the clinical case of a 10-year-old patient diagnosed with dilated cardiomyopathy who registered INR values above 10 upon receiving standard doses of acenocoumarol, as well as other values reported as uncoagulable, forcing the discontinuation and restart of treatment more than once. Expected and stable INR levels were achieved after more than 30 days of treatment, surprisingly with half the recommended dose for a patient of her age and weight. We decided to conduct a retrospective pharmacogenomic analysis including nucleotide genetic polymorphisms (SNPs) with different degrees of association with the dose/response to antivitamin K (AVK) drugs: rs2108622 (gene CYP4F2), rs9923231, rs7294 (gene VKORC1), rs1799853, and rs1057910 (CYP2C9 gene) using TaqMan® RT-PCR. The patient was homozygous for rs9923231 (VKORC1) and heterozygous for rs2108622 (CYP4F2), a genetic profile strongly associated with a requirement of lower AVK doses as shown by national and international evidence.In conclusion, the pharmacogenetic analysis confirmed that this patient''s genetic conditions, involving low expression of the VKA therapeutic target, required a lower dose than that established in clinical protocols as recommended by the Food and Drug Administration (FDA) and the PharmGKB® for coumarin drugs. A previous genotypic analysis of the patient would have allowed reaching the therapeutic range sooner, thus avoiding potential bleeding risks. This shows the importance of pharmacogenetic analyses for highly variable treatments with a narrow therapeutic range.  相似文献   

3.
Inconsistent associations with warfarin dose were observed in genetic variants except VKORC1 haplotype and CYP2C9*3 in Chinese people, and few studies on warfarin dose algorithm was performed in a large Chinese Han population lived in Northern China. Of 787 consenting patients with heart-valve replacements who were receiving long-term warfarin maintenance therapy, 20 related Single nucleotide polymorphisms were genotyped. Only VKORC1 and CYP2C9 SNPs were observed to be significantly associated with warfarin dose. In the derivation cohort (n = 551), warfarin dose variability was influenced, in decreasing order, by VKORC1 rs7294 (27.3%), CYP2C9*3(7.0%), body surface area(4.2%), age(2.7%), target INR(1.4%), CYP4F2 rs2108622 (0.7%), amiodarone use(0.6%), diabetes mellitus(0.6%), and digoxin use(0.5%), which account for 45.1% of the warfarin dose variability. In the validation cohort (n = 236), the actual maintenance dose was significantly correlated with predicted dose (r = 0.609, P<0.001). Our algorithm could improve the personalized management of warfarin use in Northern Chinese patients.  相似文献   

4.

Background

Warfarin is a widely prescribed anticoagulant with narrow therapeutic window for thromboembolic events. Warfarin displays large individual variability in dose requirements. The purpose of this study is to assess the contribution of patient-specific and genetic risk factors to dose requirements of patients on either high or low warfarin maintenance dose in Ghana. Blood samples were collected from 141 (62 males, 79 females) Ghanaian patients on stable warfarin dose to determine their INR. Influence of patient specific factors and gene variations within VKORC1, CYP2C9 and CYP4F2 were determined in patients on either high or low warfarin maintenance dose.

Results

One hundred and forty-one patients took part in the study with 79 (56%) participants being Female. The median age of the study participants was 48 years [IQR: 34–58]. The median duration for patients to be on warfarin therapy was 24 months [IQR: 10–72]. Majority of the study participants (80.9%, n = 114) did not have any side effects to warfarin. CYP2C9*2 and CYP2C9*3 variant alleles were not detected. VKORC1 variant allele was observed at 6% and CYP4F2 variant allele was observed at 41%. Duration of patients on warfarin therapy was marginally associated with high warfarin dose (adjusted OR = 1.01 [95% CI 1.00–1.02], p = 0.033) while the odds of heterozygous individuals (G/A) for VKORC1 gene to have high warfarin dose compared to persons with homozygous (G/G) (adjusted OR = 0.06 [95% CI 0.01–0.63], p = 0.019). Age, gender, diagnosis, presence of side effects and other medications were not associated with warfarin dose (p = 0.05).

Conclusion

This study provides data on VKORC1 and CYP4F2 variants among an indigenous African population. Duration of patients on warfarin therapy was marginally associated with high warfarin dose. CYP2C9*2 and *3 variants were not detected and may not be the most important genetic factor for warfarin maintenance dose among Ghanaians.
  相似文献   

5.

Background

Aspirin-induced enteropathy is now increasingly being recognized although the pathogenesis of small intestinal damage induced by aspirin is not well understood and related risk factors have not been established.

Aim

To investigate pharmacogenomic profile of low dose aspirin (LDA)-induced small bowel bleeding.

Methods

Genome-wide analysis of single nucleotide polymorphisms (SNPs) was performed using the Affymetrix DMET™ Plus Premier Pack. Genotypes of candidate genes associated with small bowel bleeding were determined using TaqMan SNP Genotyping Assay kits and direct sequencing.

Results

In the validation study in overall 37 patients with small bowel bleeding and 400 controls, 4 of 27 identified SNPs: CYP4F11 (rs1060463) GG (p=0.003), CYP2D6 (rs28360521) GG (p=0.02), CYP24A1 (rs4809957) T allele (p=0.04), and GSTP1 (rs1695) G allele (p=0.04) were significantly more frequent in the small bowel bleeding group compared to the controls. After adjustment for significant factors, CYP2D6 (rs28360521) GG (OR 4.11, 95% CI. 1.62 -10.4) was associated with small bowel bleeding.

Conclusions

CYP4F11 and CYP2D6 SNPs may identify patients at increased risk for aspirin-induced small bowel bleeding.  相似文献   

6.

Background and Aim

Warfarin is the most frequently prescribed anticoagulant worldwide. However, warfarin therapy is associated with a high risk of bleeding and thromboembolic events because of a large interindividual dose-response variability. We investigated the effect of genetic and non genetic factors on warfarin dosage in a South Italian population in the attempt to setup an algorithm easily applicable in the clinical practice.

Materials and Methods

A total of 266 patients from Southern Italy affected by cardiovascular diseases were enrolled and their clinical and anamnestic data recorded. All patients were genotyped for CYP2C9*2,*3, CYP4F2*3, VKORC1 -1639 G>A by the TaqMan assay and for variants VKORC1 1173 C>T and VKORC1 3730 G>A by denaturing high performance liquid chromatography and direct sequencing. The effect of genetic and not genetic factors on warfarin dose variability was tested by multiple linear regression analysis, and an algorithm based on our data was established and then validated by the Jackknife procedure.

Results

Warfarin dose variability was influenced, in decreasing order, by VKORC1-1639 G>A (29.7%), CYP2C9*3 (11.8%), age (8.5%), CYP2C9*2 (3.5%), gender (2.0%) and lastly CYP4F2*3 (1.7%); VKORC1 1173 C>T and VKORC1 3730 G>A exerted a slight effect (<1% each). Taken together, these factors accounted for 58.4% of the warfarin dose variability in our population. Data obtained with our algorithm significantly correlated with those predicted by the two online algorithms: Warfarin dosing and Pharmgkb (p<0.001; R2 = 0.805 and p<0.001; R2 = 0.773, respectively).

Conclusions

Our algorithm, which is based on six polymorphisms, age and gender, is user-friendly and its application in clinical practice could improve the personalized management of patients undergoing warfarin therapy.  相似文献   

7.
Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.  相似文献   

8.

Background

Drug response variability observed amongst patients is caused by the interaction of both genetic and non-genetic factors, and frequencies of functional genetic variants are known to vary amongst populations. Pharmacogenomic research has the potential to help with individualized treatments. We have not found any pharmacogenomics information regarding Uygur ethnic group in northwest China. In the present study, we genotyped 85 very important pharmacogenetic (VIP) variants (selected from the PharmGKB database) in the Uygur population and compared our data with other eleven populations from the HapMap data set.

Results

Through statistical analysis, we found that CYP3A5 rs776746, VKORC1 rs9934438, and VKORC1 rs7294 were most different in Uygur compared with most of the eleven populations from the HapMap data set. Compared with East Asia populations, allele A of rs776746 is less frequent and allele A of rs7294 is more frequent in the Uygur population. The analysis of F-statistics (Fst) and population structure shows that the genetic background of Uygur is relatively close to that of MEX.

Conclusions

Our results show significant differences amongst Chinese populations that will help clinicians triage patients for better individualized treatments.
  相似文献   

9.

Background

Warfarin is a highly effective anticoagulant however its effectiveness relies on maintaining INR in therapeutic range. Finding the correct dose is difficult due to large inter-individual variability. Two genes, CYP2C9 and VKORC1, have been associated with this variability, leading to genotype-guided dosing tables in warfarin labeling. Nonetheless, it remains unclear how genotypic information should be used in practice. Navigating the literature to determine how genotype will influence warfarin response in a particular patient is difficult, due to significant variation in patient ethnicity, outcomes investigated, study design, and methodological rigor. Our systematic review was conducted to enable fair and accurate interpretation of which variants affect which outcomes, in which patients, and to what extent.

Methodology/Principal Findings

A comprehensive search strategy was applied and 117 studies included. Primary outcomes were stable dose, time to stable dose and bleeding events. Methodological quality was assessed using criteria of Jorgensen and Williamson and data synthesized in meta-analyses using advanced methods. Pooled effect estimates were significant in most ethnic groups for CYP2C9*3 and stable dose (mutant types requiring between 1.1(0.7–1.5) and 2.3 (1.6–3.0)mg/day). Effect estimates were also significant for VKORC1 and stable dose for most ethnicities, although direction differed between asians and non-asians (mutant types requiring between 0.8(0.4–1.3) and 1.5(1.1–1.8)mg/day more in asians and between 1.5(0.7–2.2) and 3.1(2.7–3.6)mg/day less in non-asians). Several studies were excluded due to inadequate data reporting. Assessing study quality highlighted significant variability in methodological rigor. Notably, there was significant evidence of selective reporting, of outcomes and analysis approaches.

Conclusions/Significance

Genetic associations with warfarin response vary between ethnicities. In order to achieve unbiased estimates in different populations, a high level of methodological rigor must be maintained and studies should report sufficient data to enable inclusion in meta-analyses. We propose minimum reporting requirements, suggest methodological guidelines and provide recommendations for reducing the risk of selective reporting.  相似文献   

10.

Objective

Characterisation of anticoagulant control is fundamental to investigations of its association with clinical outcome. Anticoagulant control depends on several factors. This paper aims to illustrate the implications of different methods for measuring and analysing anticoagulant control in patients with second generation mechanical heart valve prostheses.

Methods

International normalised ratio (INR) data collected during the 10-year follow-up of a randomised controlled trial were analysed. We considered the influence of: 3 different target INR ranges; anticoagulant control expressed as the proportion of INR readings (PoR) vs. anticoagulant control follow-up time (PoT); 3 ways of describing the profile of anticoagulant control over time.

Results

Different target INR ranges dramatically influenced derived measures of anticoagulant control; the PoT within the target range varied from 88% for the widest to 28% for narrowest range. Overall distributions of PoR and PoT observations were similar but differed by up to ±20% for individuals; PoT exceeded PoR when control was good but was less than PoR when control was poor. Classifying PoT outside the target range showed that widely varying combinations of PoT too high and too low are possible across individuals.

Conclusions

Researchers'' choices about methods for measuring and quantifying anticoagulant control markedly influence the values derived from INR readings. The use of different methods across studies makes it difficult or impossible to compare findings and to establish an evidence base for clinical practice. Methods for quantifying anticoagulant control should be standardised.  相似文献   

11.

Background

Recently, using the patient’s genotype to guide warfarin dosing has gained interest; however, whether pharmacogenetics-based dosing (PD) improves clinical outcomes compared to conventional dosing (CD) remains unclear. Thus, we performed a meta-analysis to evaluate these two strategies.

Methods

The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese VIP and Chinese Wan-fang databases were searched. The Cochrane Collaboration’s tool was used to assess the risk of bias in randomized controlled trials (RCTs). The primary outcome was time within the therapeutic range (TTR); the secondary end points were the time to maintenance dose and time to first therapeutic international normalized ratio (INR), an INR greater than 4, adverse events, major bleeding, thromboembolism and death from any cause.

Results

A total of 11 trials involving 2,678 patients were included in our meta-analysis. The results showed that PD did not improve the TTR compared to CD, although PD significantly shortened the time to maintenance dose (MD = -8.80; 95% CI: -11.99 to -5.60; P<0.00001) and the time to first therapeutic INR (MD = -2.80; 95% CI: -3.45 to -2.15; P<0.00001). Additionally, PD significantly reduced the risk of adverse events (RR = 0.86; 95% CI: 0.75 to 0.99; P = 0.03) and major bleeding (RR = 0.36; 95% CI: 0.15 to 0.89, P = 0.03), although it did not reduce the percentage of INR greater than 4, the risk of thromboembolic events and death from any cause. Subgroup analysis showed that PD resulted in a better improvement in the endpoints of TTR and over-anticoagulation at a fixed initial dosage rather than a non-fixed initial dosage.

Conclusions

The use of genotype testing in the management of warfarin anticoagulation was associated with significant improvements in INR-related and clinical outcomes. Thus, genotype-based regimens can be considered a reliable and accurate method to determine warfarin dosing and may be preferred over fixed-dose regimens.

Trial Registration PROSPERO

Database registration: CRD42015024127.  相似文献   

12.
To clarify pharmacokinetic-pharmacodynamic (PK-PD) factors associated with the over-anticoagulation response in Asians during warfarin induction therapy, population PK-PD analyses were conducted in an attempt to predict the time-courses of the plasma S-warfarin concentration, Cp(S), and coagulation and anti-coagulation (INR) responses. In 99 Chinese patients we analyzed the relationships between dose and Cp(S) to estimate the clearance of S-warfarin, CL(S), and that between Cp(S) and the normal prothrombin concentration (NPT) as a coagulation marker for estimation of IC50. We also analyzed the non-linear relationship between NPT inhibition and the increase in INR to derive the non-linear index λ. Population analyses accurately predicted the time-courses of Cp(S), NPT and INR. Multivariate analysis showed that CYP2C9*3 mutation and body surface area were predictors of CL(S), that VKORC1 and CYP4F2 polymorphisms were predictors of IC50, and that baseline NPT was a predictor of λ. CL(S) and λ were significantly lower in patients with INR≥4 than in those with INR<4 (190 mL/h vs 265 mL/h, P<0.01 and 3.2 vs 3.7, P<0.01, respectively). Finally, logistic regression analysis revealed that CL(S), ALT and hypertension contributed significantly to INR≥4. All these results indicate that factors associated with the reduced metabolic activity of warfarin represented by CL(S), might be critical determinants of the over-anticoagulation response during warfarin initiation in Asians.

Trial Registration

ClinicalTrials.gov NCT02065388  相似文献   

13.

BACKGROUND AND AIM:

This study reports the prevalence of five clinically significant variants associated with increased risk of cardiovascular disorders, and variable responses of individuals to commonly prescribed cardiovascular drugs in a South Indian population from the state of Kerala.

MATERIALS AND METHODS:

Genomic DNA isolated from 100 out-patient samples from Kerala were sequenced to examine the frequency of clinically relevant polymorphisms in the genes MYBPC3 (cardiomyopathy), SLCO1B1 (statin-induced myopathy), CYP2C9, VKORC1 (response to warfarin) and CYP2C19 (response to clopidogrel).

RESULTS:

Our analyses revealed the frequency of a 25 bp deletion variant of MYBPC3 associated with risk of cardiomyopathy was 7%, and the SLCO1B1 “C” allele associated with risk for statin-induced myopathy was 15% in this sample group. Among the other variants associated with dose-induced toxicity of warfarin, VKORC1 (c.1639G>A), was detected at 22%, while CYP2C9*3 and CYP2C9*2 alleles were present at a frequency of 15% and 3% respectively. Significantly, the tested sample population showed high prevalence (66%) of CYP2C19*2 variant, which determines response to clopidogrel therapy.

CONCLUSIONS:

We have identified that certain variants associated with cardiovascular disease and related drug response in the five genes, especially those in VKORC1, CYP2C19 and MYBPC3, are highly prevalent in the Kerala population, with almost 2 times higher prevalence of CYP2C19*2 variant compared with other regions in the country. Since the variants chosen in this study have relevance in disease phenotype and/or drug response, and are detected at a higher frequency, this study is likely to encourage clinicians to perform genetic testing before prescribing therapy.  相似文献   

14.

Background

Several genes implicated in high-density lipoprotein (HDL) metabolism have been reported to be associated with age-related macular degeneration (AMD). Furthermore, HDL transport the two carotenoids, lutein and zeaxanthin, which are highly suspected to play a key-role in the protection against AMD. The objective is to confirm the associations of HDL-related loci with AMD and to assess their associations with plasma lutein and zeaxanthin concentrations.

Methods

Alienor study is a prospective population-based study on nutrition and age-related eye diseases performed in 963 elderly residents of Bordeaux, France. AMD was graded according to the international classification, from non-mydriatic colour retinal photographs. Plasma lutein and zeaxanthin were determined by normal-phase high-performance liquid chromatography. The following polymorphisms were studied: rs493258 and rs10468017 (LIPC), rs3764261 (CETP), rs12678919 (LPL) and rs1883025 (ABCA1).

Results

After multivariate adjustment, the TT genotype of the LIPC rs493258 variant was significantly associated with a reduced risk for early and late AMD (OR=0.64, 95%CI: 0.41-0.99; p=0.049 and OR=0.26, 95%CI: 0.08-0.85; p=0.03, respectively), and with higher plasma zeaxanthin concentrations (p=0.03), while plasma lipids were not significantly different according to this SNP. Besides, the LPL variant was associated with early AMD (OR=0.67, 95%CI: 0.45-1.00; p=0.05) and both with plasma lipids and plasma lutein (p=0.047). Associations of LIPC rs10468017, CETP and ABCA1 polymorphisms with AMD did not reach statistical significance.

Conclusion

These findings suggest that LIPC and LPL genes could both modify the risk for AMD and the metabolism of lutein and zeaxanthin.  相似文献   

15.

Background

Dyslipidemia and overweight are common issues in children. Identifying genetic markers of risk could lead to targeted interventions. A polymorphism of SNP rs7566605 near insulin-induced gene 2 (INSIG2) has been identified as a strong candidate gene for obesity, through its feedback control of lipid synthesis.

Objective

To identify polymorphisms in INSIG2 which are associated with overweight (BMI ≥ 85% for age) and dyslipidemia in children. Hypothesis: The C allele of rs7566605 would be significantly associated with BMI and LDL.

Design/Methods

We genotyped 15 SNPs in/near INSIG2 in 1,058 healthy children (53% non-Hispanic white (NHW), 37% overweight) participating in a school based study. Genotype was compared with BMI and lipid markers, adjusting for age, gender, and puberty.

Results

We found a significant association between the SNP rs12464355 and LDL in NHW children, p < 0.001. The G allele is protective (lower LDL). A different SNP was associated with overweight in NHW: rs17047757. SNP rs7566605 was not associated with overweight or lipid levels.

Conclusions

We identified novel genetic associations between INSIG2 and both overweight and LDL in NHW children. Polymorphisms in INSIG2 may be important in the development of obesity through its effects on lipid regulation.  相似文献   

16.

Background

Heredity and environmental exposures may contribute to a predisposition to allergic rhinitis (AR). Autoimmunity may also involve into this pathologic process. FCRL3 (Fc receptor-like 3 gene), a novel immunoregulatory gene, has recently been reported to play a role in autoimmune diseases.

Objective

This study was performed to evaluate the potential association of FCRL3 polymorphisms with AR in a Chinese Han population.

Methods

Five single-nucleotide polymorphisms of FCRL3, rs945635, rs3761959, rs7522061, rs10489678 and rs7528684 were genotyped in 540 AR patients and 600 healthy controls using a PCR-restriction fragment length polymorphism assay. Allele, genotype and haplotype frequencies were compared between patients and controls using the χ2 test. The online software platform SHEsis was used to analyze their haplotypes.

Results

This study identified three strong risk SNPs rs7528684, rs10489678, rs7522061 and one weak risk SNP rs945635 of FCRL3 in Chinese Han AR patients. For rs7528684, a significantly increased prevalence of the AA genotype and A allele in AR patients was recorded. The frequency of the GG genotype and G allele of rs10489678 was markedly higher in AR patients than those in controls. For rs7522061, a higher frequency of the TT genotype, and a lower frequency of the CT genotype were found in AR patients. Concerning rs945635, a lower frequency of the CC genotype, and a higher frequency of G allele were observed in AR patients. According to the analysis of the three strong positive SNPs, the haplotype of AGT increased significantly in AR cases (AR = 38.8%, Controls = 24.3%, P = 8.29×10-14, OR [95% CI] 1.978 [1.652~2.368]).

Conclusions

This study found a significant association between the SNPs in FCRL3 gene and AR in Chinese Han patients. The results suggest these gene polymorphisms might be the autoimmunity risk for AR.  相似文献   

17.

Background & Objectives

Intravenous iron supplementation is widespread in the hemodialysis population, but there is uncertainty about the safest dosing strategy. We compared the safety of different intravenous iron dosing practices on the risk of adverse cardiovascular outcomes in a large population of hemodialysis patients.

Design settings, participants, & measurements

A retrospective cohort was created from the clinical database of a large dialysis provider (years 2004-2008) merged with administrative data from the United States Renal Data System. Dosing comparisons were (1) bolus (consecutive doses ≥ 100 mg exceeding 600 mg during one month) versus maintenance (all other iron doses during the month); and (2) high (> 200 mg over 1 month) versus low dose (≤ 200 mg over 1 month). We established a 6-month baseline period (to identify potential confounders and effect modifiers), a one-month iron exposure period, and a three-month follow-up period. Outcomes were myocardial infarction, stroke, and death from cardiovascular disease.

Results

117,050 patients contributed 776,203 unique iron exposure/follow-up periods. After adjustment, we found no significant associations of bolus dose versus maintenance, hazards ratio for composite outcome, 1.03 (95% C.I. 0.99, 1.07), or high dose versus low dose intravenous iron, hazards ratio for composite outcome, 0.99 (95% C.I. 0.96, 1.03). There were no consistent associations of either high or bolus dose versus low or maintenance respectively among pre-specified subgroups.

Conclusions

Strategies favoring large doses of intravenous iron were not associated with increased short-term cardiovascular morbidity and mortality. Investigation of the long-term safety of the various intravenous iron supplementation strategies may still be warranted.  相似文献   

18.

Purpose

Patients with Atrial Fibrillation (AF) and prior stroke are classified as high risk in all risk stratification schemes. A systematic review and meta-analysis was performed to compare the efficacy and safety of New Oral Anticoagulants (NOACs) to warfarin in patients with AF and previous stroke or transient ischemic attack (TIA).

Methods

Three randomized controlled trials (RCTs), including total 14527 patients, comparing NOACs (apixaban, dabigatran and rivaroxaban) with warfarin were included in the analysis. Primary efficacy endpoint was ischemic stroke, and primary safety endpoint was intracranial bleeding. Random-effects models were used to pool efficacy and safety data across RCTs. RevMan and Stata software were used for direct and indirect comparisons, respectively.

Results

In patients with AF and previous stroke or TIA, effects of NOACs were not statistically different from that of warfarin, in reduction of stroke (Odds Ratio [OR] 0.86, 95% confidence interval [CI] 0.73- 1.01), disabling and fatal stroke (OR 0.85, 95% CI 0.71-1.04), and all-cause mortality (OR 0.90, 95% CI 0.79 -1.02). Randomization to NOACs was associated with a significantly lower risk of intracranial bleeding (OR 0.42, 95% CI 0.25-0.70). There were no major differences in efficacy between apixaban, dabigatran (110 mg BID and 150 mg BID) and rivaroxaban. Major bleeding was significantly lower with apixaban and dabigatran (110 mg BID) compared with dabigatran (150 mg BID) and rivaroxaban.

Conclusion

NOACs may not be more effective than warfarin in the secondary prevention of ischemic stroke in patients with a prior history of cerebrovascular ischemia, but have a lower risk of intracranial bleeding.  相似文献   

19.

Background

Cytochrome P450 1A1 (CYP1A1) is a member of the CYP1 family, which is a key enzyme in the metabolism of many endogenous substrates and exogenous carcinogens. To date, many studies have examined the association between CYP1A1 MspI and Ile462Val polymorphisms and cancer risk in various populations, but their results have been conflicting rather than consistent.

Methods

To assess this relationship more precisely, a meta-analysis based on 198 publications was performed. Odds ratios (OR) and corresponding 95% confidence intervals (CIs) were used to assess the association. The statistical heterogeneity across studies was examined with a chi-square-based Q-test.

Results

Overall, a significant elevated risk of cancer was associated with CYP1A1 MspI and Ile462Val polymorphisms for all genetic models studied. Further stratified analysis by cancer types revealed that the MspI polymorphism may increase the risk of lung cancer and cervical cancer whereas the Ile462Val polymorphism may contribute to a higher risk of lung cancer, leukemia, esophageal carcinoma, and prostate cancer. In the subgroup analysis by ethnicity, obvious associations were found in the Asian population for the MspI polymorphism while an increased risk of cancer was observed in Asians and Caucasians for the Ile462Val polymorphism.

Conclusions

The results of this meta-analysis suggest that CYP1A1 MspI and Ile462Val polymorphisms contribute to increased cancer susceptibility among Asians. Additional comprehensive system analyses are required to validate this association and other related polymorphisms.  相似文献   

20.
《Endocrine practice》2013,19(6):1043-1049
ObjectiveTo review the literature regarding the interaction among amiodarone therapy, thyroid hormone levels, and warfarin metabolism.Methods73-year-old male with type 2 after describing an unusual case of amiodarone-induced thyrotoxicosis (AIT) who experienced a severe rise in international normalized ratio (INR) values after initiating warfarin therapy due to an unusual combination of excessive thyroid hormones, amiodarone therapy, and a genetic abnormality affecting warfarin metabolism.ResultsGenetic analysis revealed that the patient was CYP2C9*2 wild-type, CYP2C9*3/*3 homozygous mutant, and VKORC1*3/*3 homozygous mutant. A review of the literature revealed that both mutations can independently affect warfarin metabolism. In addition, amiodarone therapy and the presence of thyrotoxicosis per se can affect warfarin metabolism and reduce the dose needed to maintain INR in the therapeutic range. The association of the 2 genetic polymorphisms in a patient with AIT is extremely rare and strongly impairs warfarin metabolism, exposing the patient to a high risk of overtreatment.ConclusionsIn patients with AIT, warfarin therapy should be gradually introduced, starting with a very low dose, because of the significant risk of warfarin overtreatment. Whether the genetic analysis of CYP2C9 and VKORC1 polymorphisms should be routinely performed in AIT patients remains conjectural. (Endocr Pract. 2013; 19:1043-1049)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号