首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of threshold can potentially be applied to conservation planning of species, habitats, and ecosystems. It also has significance in managing social–ecological systems for resilience. However, our understanding and use of threshold has been scattered among various disciplines, and the link to conservation planning and social–ecological system management has not been strongly established. The review of the use of threshold in various disciplines reveals that the term is used in a similar manner in both natural and social sciences: a threshold is a point or a zone on an independent variable, and if it is crossed, a sudden, large change in the state of a dependent variable occurs. Even a small change in the independent variable brings this drastic change; nonlinear relationship characterizes the threshold response. Thresholds also separate alternative regimes in a social–ecological system. The discussion of the application of threshold concept to watershed planning concludes that although using one threshold value of impervious surfaces in a watershed to regulate new developments and retrofit old ones is a cost-effective method, a more integrated approach is needed. The use of habitat amount threshold to conserve species promotes proactive planning that would prioritize areas for protection before the threshold is reached and would restore habitat based on the threshold target. However, species-specific data to decide on the threshold is often lacking, and the identification of thresholds is not straightforward. Nonetheless, the concept of threshold is appealing for proactive planning and significant in managing social–ecological systems for resilience.  相似文献   

2.
An ecological threshold is the point at which there is an abrupt change in an ecosystem quality, property or phenomenon, or where small changes in an environmental driver produce large responses in the ecosystem. Analysis of thresholds is complicated by nonlinear dynamics and by multiple factor controls that operate at diverse spatial and temporal scales. These complexities have challenged the use and utility of threshold concepts in environmental management despite great concern about preventing dramatic state changes in valued ecosystems, the need for determining critical pollutant loads and the ubiquity of other threshold-based environmental problems. In this paper we define the scope of the thresholds concept in ecological science and discuss methods for identifying and investigating thresholds using a variety of examples from terrestrial and aquatic environments, at ecosystem, landscape and regional scales. We end with a discussion of key research needs in this area.  相似文献   

3.
Drylands are one of the most diverse yet highly vulnerable social–ecological systems on Earth. Water scarcity has contributed to high levels of heterogeneity, variability and unpredictability, which together have shaped the long coadaptative process of coupling humans and nature. Land degradation and desertification in drylands are some of the largest and most far-reaching global environmental and social change problems, and thus are a daunting challenge for science and society. In this study, we merged the Drylands Development Paradigm, Holling''s adaptive cycle metaphor and resilience theory to assess the challenges and opportunities for livelihood development in the Amapola dryland social–ecological system (DSES), a small isolated village in the semi-arid region of Mexico. After 450 years of local social–ecological evolution, external drivers (neoliberal policies, change in land reform legislation) have become the most dominant force in livelihood development, at the cost of loss of natural and cultural capital and an increasingly dysfunctional landscape. Local DSESs have become increasingly coupled to dynamic larger-scale drivers. Hence, cross-scale connectedness feeds back on and transforms local self-sustaining subsistence farming conditions, causing loss of livelihood resilience and diversification in a globally changing world. Effective efforts to combat desertification and improve livelihood security in DSESs need to consider their cyclical rhythms. Hence, we advocate novel dryland stewardship strategies, which foster adaptive capacity, and continuous evaluation and social learning at all levels. Finally, we call for an effective, flexible and viable policy framework that enhances local biotic and cultural diversity of drylands to transform global drylands into a resilient biome in the context of global environmental and social change.  相似文献   

4.
生态阈值研究进展   总被引:17,自引:2,他引:17  
生态阈值是指生态系统从一种状态快速转变为另一种状态的某个点或一段区间,推动这种转变的动力来自某个或多个关键生态因子微弱的附加改变。生态阈值现象普遍存在于自然生态系统中。主要有两种类型:生态阈值点(ecological threshold point)和生态阈值带(ecological threshold zone)。在生态阈值点前后,生态系统的特性、功能或过程发生迅速的改变。生态阈值带暗含了生态系统从一种稳定状态到另一稳定状态逐渐转换的过程,而不像点型阈值那样发生突然的转变。后者在自然界中可能更为普遍。在自然资源保护和生态系统可持续管理中,生态阈值研究有着重要的理论和实践意义,受到生态学和相关学科的密切关注。其研究已经在森林、草原、湖泊、海洋等生态系统,从不同角度,针对不同生态因子广泛开展。由于生态因子相互作用的复杂性,有关生态阈值的性质及其在不同空间尺度上的联系仍然存在很大的不确定性。在未来的研究中必须加强综合和定量化研究,进一步提高应用生态阈值的能力。在全球变化和生态响应研究领域,生态阈值研究将会有更大的发展空间。  相似文献   

5.
Ecosystem resilience is the inherent ability to absorb various disturbances and reorganize while undergoing state changes to maintain critical functions. When ecosystem resilience is sufficiently degraded by disturbances, ecosystem is exposed at high risk of shifting from a desirable state to an undesirable state. Ecological thresholds represent the points where even small changes in environmental conditions associated with disturbances lead to switch between ecosystem states. There is a growing body of empirical evidence for such state transitions caused by anthropogenic disturbances in a variety of ecosystems. However, fewer studies addressed the interaction of anthropogenic and natural disturbances that often force an ecosystem to cross a threshold which an anthropogenic disturbance or a natural disturbance alone would not have achieved. This fact highlights how little is known about ecosystem dynamics under uncertainties around multiple and stochastic disturbances. Here, we present two perspectives for providing a predictive scientific basis to the management and conservation of ecosystems against multiple and stochastic disturbances. The first is management of predictable anthropogenic disturbances to maintain a sufficient level of biodiversity for ensuring ecosystem resilience (i.e., resilience-based management). Several biological diversity elements appear to confer ecosystem resilience, such as functional redundancy, response diversity, a dominant species, a foundation species, or a keystone species. The greatest research challenge is to identify key elements of biodiversity conferring ecosystem resilience for each context and to examine how we can manage and conserve them. The second is the identification of ecological thresholds along existing or experimental disturbance gradients. This will facilitate the development of indicators of proximity to thresholds as well as the understanding of threshold mechanisms. The implementation of forewarning indicators will be critical particularly when resilience-based management fails. The ability to detect an ecological threshold along disturbance gradients should therefore be essential to establish a backstop for preventing the threshold from being crossed. These perspectives can take us beyond simply invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical solutions to cope with uncertainties and ecological surprises in a changing world.  相似文献   

6.
This study aims at supporting the maintenance of representative functional habitat networks as green infrastructure for biodiversity conservation through transdisciplinary macroecological analyses of wet grassland landscapes and their stewardship systems. We chose ten north European wet grassland case study landscapes from Iceland and the Netherlands in the west to Lithuania and Belarus in the east. We combine expert experiences for 20–30 years, comparative studies made 2011–2017, and longitudinal analyses spanning >70 years. Wader, or shorebird, (Charadrii) assemblages were chosen as a focal species group. We used evidence‐based knowledge and practical experience generated in three steps. (1) Experts from 8 wet grassland landscapes in northern Europe''s west and east mapped factors linked to patterns and processes, and management and governance, in social‐ecological systems that affect states and trends of wet grasslands as green infrastructures for wader birds. (2) To understand wader conservation problems and their dynamic in wet grassland landscapes, and to identify key issues for successful conservation, we applied group modeling using causal loop diagram mapping. (3) Validation was made using the historic development in two additional wet grassland landscapes. Wader conservation was dependent on ten dynamically interacting ecological and social system factors as leverage points for management. Re‐wetting and grazing were common drivers for the ecological and social system, and long‐term economic support for securing farmers’ interest in wader bird conservation. Financial public incentives at higher levels of governance of wetland management are needed to stimulate private income loops. Systems analysis based on contrasting landscape case studies in space and over time can support (1) understanding of complex interactions in social‐ecological systems, (2) collaborative learning in individual wet grassland landscapes, and (3) formulation of priorities for conservation, management, and restoration.  相似文献   

7.
《植物生态学报》2015,39(9):932
The concept of ecological thresholds was raised in the 1970s. However, it was subsequently given different definitions and interpretations depending on research fields or disciplines. For most scientists, ecological thresholds refer to the points or zones that link abrupt changes between alternative stable states of an ecosystem. The measurement and quantification of ecological thresholds have great theoretical and practical significance in ecological research for clarifying the structure and function of ecosystems, for planning sustainable development modes, and for delimiting ecological red lines in managing the ecosystems of a region. By reviewing the existing concepts and classifications of ecological thresholds, we propose a new concept and definition at two different levels: the ecological threshold points, i.e. the turning points of quantitative changes to qualitative changes, which can be considered as ecological red lines; the ecological threshold zones, i.e. the regime shifts of the quantitative changes among different stable states, which can be considered as the yellow and/or orange warning boundaries of the gradual ecological changes. The yellow thresholds mean that an ecosystem can return to a stable state by its self-adjustment, the orange thresholds indicate that the ecosystem will stay in the equilibrium state after interference factors being removed, whereas the red thresholds, as the critical threshold points, indicate that the ecosystem will undergo irreversible degradation or even collapse beyond those points. We also summarizes two types of popular Methods in determining ecological thresholds: statistical analysis and modeling based on data of field observations. The applications of ecological thresholds in ecosystem service, biodiversity conservation and ecosystem management research are also reviewed. Future research on ecological thresholds should focus on the following aspects: (1) methodological development for measurement and quantification of ecological thresholds; (2) emphasizing the scaling effect of ecological thresholds and establishment of national-scale observation system and network; and (3) implementation of ecological thresholds as early warning tools in ecosystem management and delimiting ecological red lines.  相似文献   

8.
The empirical question of thresholds and mechanisms of mate choice   总被引:1,自引:0,他引:1  
Summary Theoretical discussions concerning how animals might best sample and select mates have suggested that individuals could base decisions either on a sample of mates (sampled-based decisions) or on a threshold of comparison (threshold-based decisions). Recent theoretical work demonstrates that threshold-based mating decisions generate higher expected fitness than sample-based mating decisions when search costs exist. Empirical results from most unmanipulated systems, however, either conclude that females make sample-based decisions or are inconclusive. A few experimental studies designed to detect mating thresholds purport to demonstrate threshold-based choice but an examination of these studies indicates such conclusions were premature. We believe that few examples of threshold-based choice exist because protocols designed to identify mating thresholds were often inconsistent with models of threshold choice. We suggest that future empirical work strive not to document mating thresholdsper se. Rather, future work might best reveal decision rules by manipulating the distribution of quality among potential mates; such manipulations predict uniquely how females using sample-based and threshold-based decision rules should behave.  相似文献   

9.
马华  钟炳林  岳辉  曹世雄 《生态学报》2015,35(18):6148-6156
自然修复主要通过封山育林、禁止农作、禁牧禁伐措施,减少人类对环境的扰动,利用自然生态环境的自我演替能力,恢复生态环境,实现生态平衡。自然修复作为一种成本低、无污染的生态修复手段很早就受到人们重视,但关于自然修复适用范围的研究较少。为了正确认识自然修复的适用性,选择了我国南方红壤地区长期遭受严重土壤侵蚀危害的福建省长汀县为研究对象,通过对长期自然修复样地的监测资料分析,发现在坡度条件为20%—30%下,当植被覆盖度低于20%的退化阈值时,严重的土壤侵蚀引发的土壤肥力损失将导致生态系统自我退化,自然修复不仅无法改善当地的生态系统,反而会引起生态系统的进一步恶化。由此可见,自然修复并不适合所有的生态系统,当生态系统退化到一定程度时,退化生态系统必须通过人工干预来修复。因此,必须探索适合当地的生态修复模式,在生态系统退化突破阈值时,红壤丘陵区应通过恢复土壤肥力、促进自然植被覆盖度增加、综合提高生态系统健康水平。  相似文献   

10.
新型生态系统理论及其争议综述   总被引:2,自引:0,他引:2  
张绍良  杨永均  侯湖平 《生态学报》2016,36(17):5307-5314
澳大利亚Richard J Hobbs教授等近年提出的新型生态系统(Novel Ecosystems)理论认为,由于人类作用,地球生态系统经历了前所未有的变化,很多生态系统已经越过不可逆转的阈值,不可能恢复到原有状态,形成了新的生态系统,其生物要素、非生物要素和系统功能等都发生了显著改变;人类应该面对现实,必须反思传统生态保护和生态恢复的行为、政策和思维;应该致力新型生态系统的特征、属性和演替规律的研究,在管理、规划、政策、组织和技术等方面的创新。新型生态系统理论引起了很大争议。质疑者认为,由于自然作用力和人类的持续扰动,地球生态系统一直在不断变化,所以一直都是"新"的,根本没必要贴上"新型"标签;该理论基本概念模糊,理论模型不精确,缺乏严密的逻辑推理,还很不成熟;该理论无助于生态保护和生态恢复的实践,会扰乱人们的思想,没有实践价值。不过,支持者和质疑者都承认地球上很多生态系统的确遭到严重破坏,已经发生深刻演替,极有必要对这类系统的非线性机制、系统阈值、恢复力、新范式,以及破坏后的所有特征等开展研究,应该理性选择合适的修复方法,理性分析人工干预的程度及其成功的可能性,科学制定行动方案和优选标准。跟踪国际前沿,开展新型生态系统理论研究有助于丰富我国恢复生态学理论以及创新工程实践。  相似文献   

11.
The simultaneity of signals from different senses—such as vision and audition—is a useful cue for determining whether those signals arose from one environmental source or from more than one. To understand better the sensory mechanisms for assessing simultaneity, we measured the discrimination thresholds for time intervals marked by auditory, visual or auditory–visual stimuli, as a function of the base interval. For all conditions, both unimodal and cross-modal, the thresholds followed a characteristic ‘dipper function’ in which the lowest thresholds occurred when discriminating against a non-zero interval. The base interval yielding the lowest threshold was roughly equal to the threshold for discriminating asynchronous from synchronous presentations. Those lowest thresholds occurred at approximately 5, 15 and 75 ms for auditory, visual and auditory–visual stimuli, respectively. Thus, the mechanisms mediating performance with cross-modal stimuli are considerably slower than the mechanisms mediating performance within a particular sense. We developed a simple model with temporal filters of different time constants and showed that the model produces discrimination functions similar to the ones we observed in humans. Both for processing within a single sense, and for processing across senses, temporal perception is affected by the properties of temporal filters, the outputs of which are used to estimate time offsets, correlations between signals, and more.  相似文献   

12.
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism''s physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.  相似文献   

13.
Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these patches elevate ecosystem multifunctionality at both local and landscape scales remain outstanding questions. In a 17 month experiment conducted within southeastern United States salt marshes, we found that patches of enhanced biodiversity and multifunctionality arise only where habitat-forming foundation species overlap—i.e. where aggregations of ribbed mussels (Geukensia demissa) form around cordgrass (Spartina alterniflora) stems. By empirically scaling up our experimental results to the marsh platform at 12 sites, we further show that mussels—despite covering only approximately 1% of the marsh surface—strongly enhance five distinct ecosystem functions, including decomposition, primary production and water infiltration rate, at the landscape scale. Thus, mussels create conditions that support the co-occurrence of high densities of functionally distinct organisms within cordgrass and, in doing so, elevate salt marsh multifunctionality from the patch to landscape scale. Collectively, these findings suggest that patterns in foundation species'' overlap drive variation in biodiversity and ecosystem functioning within and across natural ecosystems. We therefore argue that foundation species should be integrated in our conceptual understanding of forces that moderate biodiversity–ecosystem functioning relationships, approaches for conserving species diversity and strategies to improve the multifunctionality of degraded ecosystems.  相似文献   

14.
Trinucleotide repeat (TNR) instability is of interest because of its central role in human diseases such as Huntington’s and its unique genetic features. One distinctive characteristic of TNR instability is a threshold, defined as a minimal repeat length that confers frequent mutations. While thresholds are well established, important risk determinants for disease-causing mutations, their mechanistic analysis has been delayed by the lack of suitably tractable experimental systems. In this study, we directly compared for the first time three DNA elements—TNR sequence, purity and flanking sequence—all of which are suggested in the literature to contribute to thresholds. In a yeast model system, we find that CAG repeats require a substantially longer threshold to contract than CTG tracts, indicating that the lagging template repeat sequence helps determine the threshold. In contrast, ATG interruptions within a CTG run do not inhibit contractions via a threshold mechanism, but by altering the likelihood of forming a hairpin intermediate. The presence of a GC-rich flanking sequence, similar to a haplotype found in some Huntington’s patients, does not detectably alter expansions of Okazaki fragment CTG tracts, suggesting no role for this flanking sequence on thresholds. Together these results help better define TNR thresholds by delineating sequence elements that modulate instability.  相似文献   

15.
Renewed efforts in tuberculosis (TB) research have led to important new insights into the biology and epidemiology of this devastating disease. Yet, in the face of the modern epidemics of HIV/AIDS, diabetes, and multidrug resistance—all of which contribute to susceptibility to TB—global control of the disease will remain a formidable challenge for years to come. New high-throughput genomics technologies are already contributing to studies of TB''s epidemiology, comparative genomics, evolution, and host–pathogen interaction. We argue here, however, that new multidisciplinary approaches—especially the integration of epidemiology with systems biology in what we call “systems epidemiology”—will be required to eliminate TB.  相似文献   

16.
The concept of ecosystem services – the benefits that nature provides to human''s society – has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700''s. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.  相似文献   

17.
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator’s variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.  相似文献   

18.
Studying social‐behavior and species associations in ecological communities is challenging because it is difficult to observe the interactions in the field. Animal behavior is especially difficult to observe when selection of habitat and activities are linked to energy costs of long‐distance movement. Migrating communities tend to be resource specific and prefer environments that offer more suitability for coexisting in a shared space and time. Given the recent advances in digital technologies, digital video recording systems are gaining popularity in wildlife research and management. We used digital video recording cameras to study social interactions and species–habitat linkages for wintering waterbirds communities in shared habitats. Examining over 8,640 hr of video footages, we built tetrapartite social‐behavioral association network of wintering waterbirds over habitat (n = 5) selection events in sites with distinct management regimes. We analyzed these networks to identify hub species and species role in activity persistence, and to explore the effects of hydrological regime on these network characteristics. Although the differences in network attributes were not significant at treatment level (p = .297) in terms of network composition and keystone species composition, our results indicated that network attributes were significantly different (p = .000, r 2 = .278) at habitat level. There were evidences suggesting that the habitat quality was better at the managed sites, where the formed networks had more species, more network nodes and edges, higher edge density, and stronger intra‐ and inter‐species interactions. In addition, we also calculated the species interaction preference scores (SIPS) and behavioral interaction preference scores (BIPS) of each network. The results showed that species synchronize activities in shared space for temporal niche partitioning in order to avoid or minimize any potential competition for shared space. Our social network analysis (SNA) approach is likely to provide a practical use for ecosystem management and biodiversity conservation.  相似文献   

19.
The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.  相似文献   

20.
Organisms may reduce uncertainty regarding how best to exploit their environment by collecting information about resource distribution. We develop a model to demonstrate how competition can facilitate or constrain an individual''s ability to use information when acquiring resources. As resource distribution underpins both selection on information use and the strength and nature of competition between individuals, we demonstrate interdependencies between the two that should be common in nature. Individuals in our model can search for resources either personally or by using social information. We explore selection on social information use across a comprehensive range of ecological conditions, generalizing the producer–scrounger framework to a wide diversity of taxa and resources. We show that resource ecology—defined by scarcity, depletion rate and monopolizability—determines patterns of individual differences in social information use. These differences suggest coevolutionary processes linking dominance systems and social information use, with implications for the evolutionary demography of populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号