首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of GPR119 agonists based on a 5-nitropyrimidine scaffold bearing endo-azabicyclic substituents were synthesized and evaluated for their GPR119 agonistic activities. Most compounds exhibited much stronger EC50 values than that of oleoylethanolamide (OEA). Among them, derivatives from endo-azabicyclic alcohols displayed more potent GPR119 agonistic activities than compounds with endo-azabicyclic amines. Especially the optimized compounds (6, 7, 8, 12, 17) were shown to have potent biological activities and were identified as full agonists. Isopropyl carbamate compound 8 synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (0.6 nM). Generally 2-fluoro substitution of the aryl group at the C4 position of 5-nitropyrimidine scaffold resulted in the increase of biological activity.  相似文献   

2.
A series of thienopyrimidine derivatives was synthesized and evaluated for their GPR119 agonistic ability. Several thienopyrimidine derivatives containing R1 and R2 substituents displayed potent GPR119 agonistic activity. Among them, compound 5d, which is a prototype, showed good in vitro activity with an EC50 value of 3 nM and human and rat liver microsomal stability. Compound 5d exhibited no CYP inhibition and induction, Herg binding, or mutagenic potential. Compound 5d showed increase insulin secretion in beta TC-6 cell and lowered the glucose excursion in mice in an oral glucose-tolerance test.  相似文献   

3.
A class of novel pyrimidine derivatives bearing diverse conformationally restricted azabicyclic ether/amine were designed, synthesized and evaluated for their GPR119 agonist activities against type 2 diabetes. Most compounds exhibited superior hEC50 values to endogenous lipid oleoylethanolamide (OEA). Analogs with 2-fluoro substitution in the aryl ring showed more potent GPR119 activation than those without fluorine. Especially compound 27m synthesized from endo-azabicyclic alcohol was observed to have the best EC50 value (1.2 nM) and quite good agonistic activity (112.2% max) as a full agonist.  相似文献   

4.
Novel 4-amino-2-phenylpyrimidine derivatives were synthesized and evaluated as GPR119 agonists. Optimization of the substituents on the phenyl ring at the 2-position and the amino group at the 4-position led to the identification of 3,4-dihalogenated and 2,4,5-trihalogenated phenyl derivatives showing potent GPR119 agonistic activity. The advanced analog (2R)-3-{[2-(4-chloro-2,5-difluorophenyl)-6-ethylpyrimidin-4-yl]amino}propane-1,2-diol (24g) was found to improve glucose tolerance at 1mg/kg po in mice and to show excellent pharmacokinetic profiles in mice and monkeys. Compound 24g also showed an excellent antidiabetic effect in diabetic kk/Ay mice after one week of single daily treatment. These results demonstrate that novel GPR119 agonist 24g improves glucose tolerance not only by enhancing glucose-dependent insulin secretion but also by preserving pancreatic β-cell function.  相似文献   

5.
G protein-coupled receptor 119 (GPR119) is known to be a promising therapeutic target for type 2 diabetes. Recently, it has been reported that the GPR119 agonist increases bone mineral density in an animal model of diabetes, suggesting that GPR119 may play a key role in bone metabolism. In this study, we investigated the functional role of GPR119 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We found that the GPR119 expression was markedly increased in preosteoclasts and then downregulated in mature osteoclasts. Activation of GPR119 with AS1269574, a potent selective agonist for GPR119, inhibited the generation of multinuclear osteoclasts from bone marrow-derived macrophages. Confirming this observation, targeted silencing of GPR119 using short hairpin RNA abrogated the AS1269574-mediated suppressive effect on osteoclast formation. GPR119 activation attenuated the expression of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and blocked RANKL-stimulated phosphorylation of IκBα, c-Jun N-terminal protein kinase (JNK), and extracellular signal-regulated kinase (ERK) but not p38. In addition, GPR119 activation suppressed preosteoclast fusion by downregulating the expression of the dendritic cell-specific transmembrane (DC-STAMP), a molecule that is essential for cell–cell fusion in osteoclast formation. Furthermore, ectopic expression of DC-STAMP restored AS1269574-mediated inhibition of osteoclast fusion. Taken together, our findings demonstrate that GPR119 plays a negative role in osteoclast differentiation and fusion induced by RANKL, and therefore may represent a potential target for bone resorption-associated diseases.  相似文献   

6.
GPR119 agonist has emerged as a promising target for the treatment of type 2 diabetes. A series of novel 2,4-disubstituted quinazoline analogues was prepared and evaluated their agonistic activity against human GPR119. The analogues bearing azabicyclic amine substituents (12a, 12c and 12g) exhibited better EC50 values than that of OEA though they appeared to be partial agonists.  相似文献   

7.
GPR119 has emerged as an attractive target for anti-diabetic agents. We identified a structurally novel GPR119 agonist 22c that carries a 5-(methylsulfonyl)indoline motif as an early lead compound. To generate more potent compounds of this series, structural modifications were performed mainly to the central alkylene spacer. Installation of a carbonyl group and a methyl group on this spacer significantly enhanced agonistic activity, resulting in the identification of 2-[1-(5-ethylpyrimidin-2-yl)piperidin-4-yl]propyl 7-fluoro-5-(methylsulfonyl)-2,3-dihydro-1H-indole-1-carboxylate (20). To further expand the chemical series of indoline-based GPR119 agonists, several heterocyclic core systems were introduced as surrogates of the carbamate spacer that mimic the presumed active conformation. This approach successfully produced an indolinylpyrimidine derivative 37, 5-(methylsulfonyl)-1-[6-({1-[3-(propan-2-yl)-1,2,4-oxadiazol-5-yl]piperidin-4-yl}oxy)pyrimidin-4-yl]-2,3-dihydro-1H-indole, which has potent GPR119 agonist activity. In rat oral glucose tolerance tests, these two indoline-based compounds effectively lowered plasma glucose excursion and glucose-dependent insulin secretion after oral administration.  相似文献   

8.
A series of 2-piperazinyl-5-alkoxypyridines were synthesized and screened against human GPR119 receptor. Through SAR analysis, compounds containing 2-alkylsulfonylpiperazinyl-5-alkoxypyridines were discovered and found to be potent agonists of the human GPR119 receptor.  相似文献   

9.
A novel series of fused pyrimidine derivatives were designed, synthesized and evaluated as GPR119 agonists. Among them, cyclohexene fused compounds (tetrahydroquinazolines) showed greater GPR119 agonistic activities than did dihydrocyclopentapyrimidine and tetrahydropyridopyrimidine scaffolds. Analogues (16, 19, 26, 28, 42) bearing endo-N-Boc-nortropane amine and fluoro-substituted aniline exhibited better EC50 values (0.27–1.2 μM) though they appeared to be partial agonists.  相似文献   

10.
GPR119 is one of the G-protein-coupled receptors expressed in pancreatic β-cells and intestinal endocrine cells. Since agonists to GPR119 stimulate glucose-dependent insulin secretion, GPR119 agonists are anticipated to promote anti-diabetic effects and control of glucose homeostasis. Here, we reported that an omega-3 unsaturated fatty acid metabolite, 5-hydroxy-eicosapentaenoic acid (5-HEPE), was a potent agonist for GPR119 and enhanced glucose-dependent insulin secretion. 5-HEPE stimulated cAMP accumulation in mouse MIN6 insulinoma cells and human HuTu80 intestinal adenocarcinoma cells. These effects were blunted by GPR119-specific siRNA. Recombinant GPR119 also responded to 5-HEPE as well as authentic agonists. Several previous reports have indicated the beneficial biological effects of omega-3 unsaturated fatty acids, and epidemiological studies have suggested that these fatty acids plays a protective role against diabetes. However, the molecular pharmacology and receptor identifications of omega-3 unsaturated fatty acids and their metabolites have not yet been well investigated. It is hoped that our findings will encourage novel investigations into the molecular relationships between omega-3 fatty acids and diabetes.  相似文献   

11.
A series of 4-(phenoxymethyl)thiazole derivatives was synthesized and evaluated for their GPR119 agonistic effect. Several 4-(phenoxymethyl)thiazoles with pyrrolidine-2,5-dione moieties showed potent GPR119 agonistic activities. Among them, compound 27 and 32d showed good in vitro activity with an EC50 value of 49?nM and 18?nM, respectively with improved human and rat liver microsomal stability compare with MBX-2982. Compound 27 & 32d did not exhibit significant CYP inhibition, hERG binding, and cytotoxicity. Moreover, these compounds lowered the glucose excursion in mice in an oral glucose-tolerance test.  相似文献   

12.
Abstract

GPR119 is a promising target for discovery of anti-type 2 diabetes mellitus agents. We described the optimisation of a novel series of pyrimido[5,4-b][1,4]oxazine derivatives as GPR119 agonists. Most designed compounds exhibited good agonistic activities. Among them, compound 10 and 15 demonstrated the potent EC50 values (13 and 12?nM, respectively) and strong inherent activities. Moreover, significant hypoglycaemic effect of compound 15 was observed by reducing the blood glucose AUC0–2h at the dose of 30?mg/kg, which is stronger than Vildagliptin (23.4% reduction vs. 17.9% reduction).  相似文献   

13.
GPR119 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. During a programme aimed at developing agonists of the GPR119 receptor, we identified compounds that were potent with reduced hERG liabilities, that had good pharmacokinetic properties and that displayed excellent glucose-lowering effects in vivo. However, further profiling in a GPR119 knock-out (KO) mouse model revealed that the biological effects were not exclusively due to GPR119 agonism, highlighting the value of transgenic animals in drug discovery programs.  相似文献   

14.
We describe the discovery and optimization of 5-(2-((1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)oxy)pyridin-4-yl)-1,2,4-oxadiazoles as novel agonists of GPR119. Previously described aniline 2 had suboptimal efficacy in signaling assays using cynomolgus monkey (cyno) GPR119 making evaluation of the target in preclinical models difficult. Replacement of the aniline ring with a tetrahydroquinoline ring constrained the rotation of the aniline C–N bond and gave compounds with increased efficacy on human and cyno receptors. Additional optimization led to the discovery of 10, which possesses higher free fraction in plasma and improved pharmacokinetic properties in rat and cyno compared to 2.  相似文献   

15.
G protein-coupled receptor (GPR) 119 is highly expressed in pancreatic β-cells and enhances the effect of glucose-stimulated insulin secretion (GSIS) on activation. The development of an oral GPR119 agonist that specifically targets the first phase of GSIS represents a promising strategy for the treatment of type 2 diabetes. In the present study, we evaluated the therapeutic potential of a novel small molecule GPR119 agonist, AS1535907, which was modified from the previously identified 2,4,6-tri-substituted pyrimidine core agonist AS1269574. AS1535907 displayed an EC50 value of 4.8 μM in HEK293 cells stably expressing human GPR119 and stimulated insulin secretion in rat islets only under high-glucose (16.8 mM) conditions. In isolated perfused pancreata from normal rats, AS1535907 enhanced the first phase of insulin secretion at 16.8 mM glucose, but had no effect at 2.8 mM glucose. In contrast, the sulfonylurea glibenclamide predominantly induced insulin release in the second phase at 16.8 mM glucose and also markedly stimulated insulin secretion at 2.8 mM glucose. In in vivo studies, a single 10 μM administration of AS1535907 to diabetic db/db mice reduced blood glucose levels due to the rapid secretion of insulin secretion following oral glucose loading. These results demonstrate that GPR119 agonist AS1535907 has the ability to stimulate the first phase of GSIS, which is important for preventing the development of postprandial hypoglycemia. In conclusion, the GPR119 agonist AS1535907 induces a more rapid and physiological pattern of insulin release than glibenclamide, and represents a novel strategy for the treatment of type 2 diabetes.  相似文献   

16.
GPR119 receptor has been proposed as a metabolic regulator playing a pivotal role in the modulation of glucose homeostasis in type 2 diabetes. GPR119 was identified on pancreatic β cells and its ligands have the ability to enhance glucose-stimulated insulin secretion (GSIS). Lysophosphatidylcholine (LPC) was shown to potentiate GSIS and our present studies indicate that 2-methoxy-lysophosphatidylcholine (2-OMe-LPC) analogues, unable to undergo 1  2 acyl migration, stimulate GSIS from murine βTC-3 pancreatic cells even more efficiently. Moreover, biological assays in engineered Tango? GPR119-bla U2OS cells were carried out to ascertain the agonist activity of 2-OMe-LPC at GPR119. 2-OMe-LPC possessing in sn-1 position the residues of myristic, palmitic, stearic and oleic acid were also evaluated as factors regulating [Ca2 +]i mobilization and cAMP levels. Extension of these studies to R- and S-enantiomers of 14:0 2-OMe-LPC revealed that the overall impact on GSIS does not depend on chirality, however, the intracellular calcium mobilization data show that the R enantiomer is significantly more active than S one. Taking into account differences in chemical structure between various native LPCs and their 2-methoxy counterparts the possible binding mode of 2-OMe-LPC to the GPR119 receptor was determined using molecular modeling approach.  相似文献   

17.
GPR91, a 7TM G-Protein-Coupled Receptor, has been recently deorphanized with succinic acid as its endogenous ligand. Current literature indicates that GPR91 plays role in various pathophysiology including renal hypertension, autoimmune disease and retinal angiogenesis. Starting from a small molecule high-throughput screening hit 1 (hGPR91 IC50: 0.8 μM)—originally synthesized in Merck for Bradykinin B1 Receptor (BK1R) program, systematic structure-activity relationship study led us to discover potent and selective hGPR91 antagonists e.g. 2c, 4c, and 5g (IC50: 7-35 nM; >1000 fold selective against hGPR99, a closest related GPCR; >100 fold selective in Drug Matrix screening). This initial work also led to identification of two structurally distinct and orally bio-available lead compounds: 5g (%F: 26) and 7e (IC50: 180 nM; >100 fold selective against hGPR99; %F: 87). A rat pharmacodynamic assay was developed to characterize the antagonists in vivo using succinate induced increase in blood pressure. Using two representative antagonists, 2c and 4c, the GPR91 target engagement was subsequently demonstrated using the designed pharmacodynamic assay.  相似文献   

18.
The endogenous lipid signaling agent oleoylethanolamide (OEA) has recently been described as a peripherally acting agent that reduces food intake and body weight gain in rat feeding models. This paper presents evidence that OEA is an endogenous ligand of the orphan receptor GPR119, a G protein-coupled receptor (GPCR) expressed predominantly in the human and rodent pancreas and gastrointestinal tract and also in rodent brain, suggesting that the reported effects of OEA on food intake may be mediated, at least in part, via the GPR119 receptor. Furthermore, we have used the recombinant receptor to discover novel selective small-molecule GPR119 agonists, typified by PSN632408, which suppress food intake in rats and reduce body weight gain and white adipose tissue deposition upon subchronic oral administration to high-fat-fed rats. GPR119 therefore represents a novel and attractive potential target for the therapy of obesity and related metabolic disorders.  相似文献   

19.
The G protein-coupled receptor 119 (GPR119) is highly expressed in pancreatic β-cells. On activation, this receptor enhances the effect of glucose-stimulated insulin secretion (GSIS) via the elevation of intracellular cAMP concentrations. Although GPR119 agonists represent promising oral antidiabetic agents for the treatment of type 2 diabetes therapy, they suffer from the inability to adequately directly preserve β-cell function. To identify a new structural class of small-molecule GPR119 agonists with both GSIS and the potential to preserve β-cell function, we screened a library of synthetic compounds and identified a candidate molecule, AS1269574, with a 2,4,6-tri-substituted pyrimidine core. Here, we examined the preliminary in vitro and in vivo effects of AS1269574 on insulin secretion and glucose tolerance. AS1269574 had an EC50 value of 2.5 μM in HEK293 cells transiently expressing human GPR119 and enhanced insulin secretion in the mouse pancreatic β-cell line MIN-6 only under high-glucose (16.8 mM) conditions. This contrasted with the action of the sulfonylurea glibenclamide, which also induced insulin secretion under low-glucose conditions (2.8 mM). In in vivo studies, a single administration of AS1269574 to normal mice reduced blood glucose levels after oral glucose loading based on the observed insulin secretion profiles. Significantly, AS1269574 did not affect fed and fasting plasma glucose levels in normal mice. Taken together, these results suggest that AS1269574 represents a novel structural class of small molecule, orally administrable GPR119 agonists with GSIS and promising potential for the treatment of type 2 diabetes.  相似文献   

20.
Aims/hypothesisGlucagon-like peptide-1 (GLP-1) is an incretin hormone derived from proglucagon, which is released from intestinal L-cells and increases insulin secretion in a glucose dependent manner. GPR119 is a lipid derivative receptor present in L-cells, believed to play a role in the detection of dietary fat. This study aimed to characterize the responses of primary murine L-cells to GPR119 agonism and assess the importance of GPR119 for the detection of ingested lipid.MethodsGLP-1 secretion was measured from murine primary cell cultures stimulated with a panel of GPR119 ligands. Plasma GLP-1 levels were measured in mice lacking GPR119 in proglucagon-expressing cells and controls after lipid gavage. Intracellular cAMP responses to GPR119 agonists were measured in single primary L-cells using transgenic mice expressing a cAMP FRET sensor driven by the proglucagon promoter.ResultsL-cell specific knockout of GPR119 dramatically decreased plasma GLP-1 levels after a lipid gavage. GPR119 ligands triggered GLP-1 secretion in a GPR119 dependent manner in primary epithelial cultures from the colon, but were less effective in the upper small intestine. GPR119 agonists elevated cAMP in ∼70% of colonic L-cells and 50% of small intestinal L-cells.Conclusions/interpretationGPR119 ligands strongly enhanced GLP-1 release from colonic cultures, reflecting the high proportion of colonic L-cells that exhibited cAMP responses to GPR119 agonists. Less GPR119-dependence could be demonstrated in the upper small intestine. In vivo, GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号