首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rodent olfactory epithelium (OE) is a good model system for studying the principles of stem and progenitor cell biology, because of its capacity for continuous neurogenesis throughout life and relatively well-characterized neuronal lineage. The development of mouse OE is divided into two stages, early and established neurogenesis. In established neurogenesis, which starts at embryonic day (E) 12.5, sustentacular cells and olfactory receptor neurons (ORNs) are produced from apical and basal progenitors, respectively. We previously reported that Six1(-/-) shows a lack of mature ORNs throughout development and disorganization of OE after E12.5. However, the molecular bases for these defects have not been addressed. Here, we show that Six1 is expressed in both apical and basal progenitors. In Six1(-/-) mice, apical proliferating cells were absent and no morphologically identifiable sustentacular cells were observed. Consistently, the expression of Notch2 and Jagged1 in the apical layer was absent in Six1(-/-) mice. On the other hand, basal proliferating cells were observed in Six1(-/-) animals, but the expression of Ngn1, NeuroD, Notch1, and Jagged2 in the basal layer was absent. The expression of Mash1, the determination gene for ORNs, and Hes genes was enhanced in Six1(-/-) mice. The present findings suggest that Six1 regulates production of functional apical and basal progenitors during OE development, through the regulation of various genes, such as neuronal basic helix-loop-helix (bHLH), neuronal repressor bHLH, and genes involved in the Notch signaling pathway.  相似文献   

2.
3.
4.
Intracellular Ca2+ plays an important role in a variety of second messenger cascades. The function of Ca2+ is mediated, in part, by Ca2+-binding proteins such as calmodulin, calretinin, calbindin, neurocalcin, recoverin, and visinin-like proteins (VILIPs). These proteins are highly expressed in rat olfactory receptor neurons (ORNs) and are localized to distinct intracellular regions. In the present study, we have identified another Ca2+-binding protein, hippocalcin, in the rat olfactory epithelium (OE). Olfactory/brain hippocalcin shows high sequence homology with hippocalcins expressed in mice and humans. Hippocalcin was predominantly localized to the olfactory cilia, the site of the initial events of olfactory signal transduction, and was found to regulate the activity of ciliary adenylate cyclases (ACs) and particulate guanylyl cyclases (GCs) in a Ca2+-dependent manner. These data indicate that hippocalcin is expressed in rat ORNs, and is likely to regulate second messenger cascades in a Ca2+-dependent manner.  相似文献   

5.
6.
Abstract - The adult olfactory receptor neurons (ORNs), located in the olfactory epithelium (OE) are permanently renewed thanks to neuronal progenitors present in the deep part of the OE, the globose basal cells (GBCs). Following the ablation of their synaptic target, the olfactory bulb (OB), ORNs degenerate by apoptosis and a wave of neurogenesis, including proliferation of GBCs and neuronal differentiation of their progeny, restores the olfactory function. The Ginkgo biloba extract (EGb 761) (Beaufour Ipsen, France) was administered to adult mice at the doses of 50 or 100 mg/kg, following bilateral bulbectomy and its effects on the expression of PCNA, reflecting the number of proliferating GBCs and on growth associated protein 43 (GAP-43), expressed by differentiating neurons were measured by Western blotting. PCNA expression peaked 9 days post-bulbectomy in untreated animals, but 7 days post-lesion in EGb 761-treated animals. A simultaneous reduction in GAP-43 expression suggested that EGb 761 may temporarily favor the proliferation of GBCs rather than their entry into the differentiation pathway. Probably as a consequence of the earlier onset of the neurogenetic response to bulbectomy, neuronal differentiation was enhanced in the OE, 3 weeks post-bulbectomy. These data suggest that EGb 761 may have beneficial effects upon neurogenesis in the OE through changing the balance between proliferation and differentiation.  相似文献   

7.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Similar to the expression of antigen receptor genes in lymphocytes, the mammalian odorant receptor (OR) genes are expressed in a mutually exclusive and monoallelic manner in olfactory sensory neurons (OSNs). DNA rearrangement has long been regarded as a possible mechanism for the allelic exclusion of the OR genes. However, mice cloned from mature OSN nuclei expressed the full repertoire of ORs, and the possibility of irreversible gene translocation was excluded as a mechanism to activate a single OR gene in each OSN. How is allelic exclusion achieved in the olfactory system? Recent transgenic experiments indicated an inhibitory role of the OR protein in preventing further activation of other OR genes. Stochastic activation of an OR gene and negative-feedback regulation by the OR gene product might ensure the maintenance of the one neuron-one receptor rule in the mammalian olfactory system.  相似文献   

16.
《Developmental neurobiology》2017,77(11):1308-1320
The olfactory epithelium (OE) has the remarkable capability to constantly replace olfactory receptor neurons (ORNs) due to the presence of neural stem cells (NSCs). For this reason, the OE provides an excellent model to study neurogenesis and neuronal differentiation. In the present work, we induced neuronal degeneration in the OE of Xenopus laevis larvae by bilateral axotomy of the olfactory nerves. We found that axotomy induces specific‐ neuronal death through apoptosis between 24 and 48h post‐injury. In concordance, there was a progressive decrease of the mature‐ORN marker OMP until it was completely absent 72h post‐injury. On the other hand, neurogenesis was evident 48h post‐injury by an increase in the number of proliferating basal cells as well as NCAM‐180– GAP‐43+ immature neurons. Mature ORNs were replenished 21 days post‐injury and the olfactory function was partially recovered, indicating that new ORNs were integrated into the olfactory bulb glomeruli. Throughout the regenerative process no changes in the expression pattern of the neurotrophin Brain Derivate Neurotrophic Factor were observed. Taken together, this work provides a sequential analysis of the neurodegenerative and subsequent regenerative processes that take place in the OE following axotomy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1308–1320, 2017  相似文献   

17.
We evaluated the role of βIII-tubulin in the morphology of olfactory receptor neuron (ORN) and olfactory dysfunction in offspring caused by prenatal and postnatal lanthanum exposure. Pregnant rats were exposed to 0.25% lanthanum chloride in drinking water from gestational day (GD) 7 until postnatal day 21. From postnatal day 23 until postnatal day 28, pups were examined with buried food pellet and olfactory maze test. The ultrastructural features of ORNs in the olfactory epithelium (OE) were observed by transmission electron microscope. The expression of βIII-tubulin and olfactory marker protein (OMP) in the tissue sections and homogenates of OE were, respectively, measured by immunodetection and western blot. Behavioral analysis of olfaction showed that lanthanum chloride exposure induced olfactory dysfunction. Offsprings exposed to lanthanum chloride showed enlarged ORN knobs and a decreased number of cilia. In addition, the levels of OMP and βIII-tubulin expression in lanthanum chloride exposure offsprings significantly decreased. Developmental lanthanum exposure could impair olfaction, and this deficit may be attributed to the downregulation of βIII-tubulin and OMP in the OE.  相似文献   

18.
Chemosensory neurons in the olfactory epithelium (OE) project axonal processes to the olfactory bulb (OB) of the brain. During embryonic stages, on their trajectory to the OB, the outgrowing axons traverse the so-called cribriform mesenchyme, which is located between the OE and the OB. The molecular cues guiding these axons through the cribriform mesenchyme are largely unknown. To identify molecules influencing the axonal trajectory in the murine cribriform mesenchyme, we performed microarray analyses focusing on extracellular matrix (ECM) proteins present in this tissue. Thereby, the ECM protein Reelin turned out to be an interesting candidate. Reelin was found to be expressed by numerous cells in the cribriform mesenchyme during the embryonic stages when the first axons navigate from the OE to the OB. These cells were closely associated with olfactory axons and apparently lack glial and neuronal markers. In the mesenchyme underlying the OE, localization of the Reelin protein was not confined to the Reelin-expressing cells, but it was also observed to be widely distributed in the ECM—most prominently in regions traversed by olfactory axons. Importantly, these axons were found to be endowed with the Reelin receptor very-low-density lipoprotein receptor (VLDLR). Finally, Reelin expression was also detectable in neuronal cells of the OB, which are contacted by VLDLR-positive olfactory axons. In summary, the results of the present study suggest that a Reelin/VLDLR signaling pathway might contribute to the formation of olfactory projections to the OB and the establishment of initial contacts between the incoming axons and neurons in the OB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Funding:  This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

19.
In normal nasal epithelium, the olfactory receptor neurons (ORNs) are continuously replaced through the differentiation of progenitor cells. The olfactory epithelium (OE) of the cystic fibrosis (CF) mouse appears normal at birth, yet by 6 mo of age, a marked dysmorphology of sustentacular cells and a dramatic reduction in olfactory receptor neurons are evident. Electroolfactograms revealed that the odor-evoked response in 30-day-old CF mice was reduced 45%; in older CF mice, a 70% reduction was observed compared with the wild type (WT) response. Consistent with studies of CF airway epithelia, Ussing chamber studies of OE isolated from CF mice showed a lack of forskolin-stimulated Cl secretion and an 12-fold increase in amiloride-sensitive sodium absorption compared with WT mice. We hypothesize that the marked hyperabsorption of Na+, most likely by olfactory sustentacular cells, leads to desiccation of the surface layer in which the sensory cilia reside, followed by degeneration of the ORNs. The CF mouse thus provides a novel model to examine the mechanisms of disease-associated loss of olfactory function. olfactory receptor neurons; sustentacular cells; electroolfactograms  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号