首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear.Hearing loss affects more than 360 million people worldwide and is often irreversible.1 Mechanosensory hair cells (HCs), the receptor cells of hearing and balance, are not regenerated in the adult mammal and their death results in permanent hearing loss.2, 3 HCs are surrounded by glia-like supporting cells (SCs) that are necessary for HC survival and function (reviewed in Monzack et al.).4 SCs perform many functions, including providing critical trophic factors, preventing excitotoxicity, and mediating regeneration in those systems (non-mammalian vertebrates) capable of replacing lost HCs.5, 6, 7, 8, 9, 10, 11 When HCs die, SCs also preserve the integrity and function of the remaining tissue by forming scars and clearing dead HCs.2, 12, 13, 14, 15, 16, 17 Maintaining a fluid barrier at the surface of the sensory epithelium after damage is necessary to preserve the electro-chemical gradient that drives HC depolarization and therefore sensory transduction after the onset of hearing (reviewed in Wangemann).18Several major stressors cause HC death,19, 20, 21, 22 including aging, noise trauma, and exposure to therapeutic drugs with ototoxic side effects. When a HC is killed by noise or aminoglycoside antibiotics, surrounding SCs form a filamentous actin (F-actin) cable that constricts the HC at its apex.2, 12, 13, 14, 15, 16, 17 This process separates the apical portion of the cell, including the stereocilia bundle, from the HC body and preserves a sealed reticular lamina.23 In the chick utricle, following the apical constriction of dead HCs, the SCs engulf and phagocytose the remaining HC corpse.15 Additional data from the chick indicate that the ototoxic drug cisplatin impairs some SC functions, including regeneration of HCs or clearance of HC debris.24 We hypothesized that SCs would have significant phagocytic activity in the mature mammalian inner ear, and that cisplatin would impair this activity. To examine these dynamic processes, we live-imaged SC phagocytic activity in the adult mouse utricle and compared the SC responses with HC stress and death caused by aminoglycosides versus cisplatin.  相似文献   

3.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

4.
Despite high remission rates after chemotherapy, only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. This extremely poor prognosis of AML is mainly caused by treatment failure due to chemotherapy resistance. Chemotherapy resistance can be caused by various features including activation of alternative signaling pathways, evasion of cell death or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R). Here we have studied the role of the insulin-like growth factor-binding protein-7 (IGFBP7), a tumor suppressor and part of the IGF-1R axis, in AML. We report that IGFBP7 sensitizes AML cells to chemotherapy-induced cell death. Moreover, overexpression of IGFBP7 as well as addition of recombinant human IGFBP7 is able to reduce the survival of AML cells by the induction of a G2 cell cycle arrest and apoptosis. This effect is mainly independent from IGF-1R activation, activated Akt and activated Erk. Importantly, AML patients with high IGFBP7 expression have a better outcome than patients with low IGFBP7 expression, indicating a positive role for IGFBP7 in treatment and outcome of AML. Together, this suggests that the combination of IGFBP7 and chemotherapy might potentially overcome conventional AML drug resistance and thus might improve AML patient survival.Only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis.1 This extremely poor prognosis is mainly caused by treatment failure due to chemotherapy resistance. This resistance is often a multifactorial phenomenon that can include enhanced expression or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R).2, 3 The IGF-1R stimulates proliferation, protects cells from apoptosis and has been implicated in the development and maintenance of various cancers.4, 5 Several oncogenes require an intact IGF-1R pathway for their transforming activity6 and moreover, disruption or inhibition of IGF-1R activity has been shown to inhibit the growth and motility of a wide range of cancer cells in vitro and in mouse models.4, 5 IGF-1Rs are membrane receptors and binding of their ligand, the insulin-like growth factor-1 (IGF-1), results in receptor phosphorylation and activation of MAPK and PI3K/Akt signaling.4 Importantly, IGF-1, normally produced by the liver and bone marrow stromal cells, can stimulate the proliferation of cancer cells in vitro and genetic manipulations that reduce IGF-1 signaling can lead to decreased tumor growth.7, 8In hematological malignancies, a role for IGF-1 signaling has been demonstrated in multiple myeloma (MM) where it stimulates growth and potently mediates survival.9 Several anti-IGF-1R strategies have been shown to inhibit MM growth.10, 11 In AML, expression of the IGF-1R and IGF-1 was detected in AML cell lines and primary AML blasts and stimulation with IGF-1 can promote the growth of AML cells.12, 13, 14 In addition, neutralizing IGF-1R antibodies and the tyrosine kinase inhibitors (TKIs) NVP-AEW541 and NVP-ADW742, have been shown to inhibit proliferation and to induce apoptosis.15, 16In addition to its mitogenic and anti-apoptotic roles, directly influencing tumor development, IGF-1R appears to be a critical determinant of response to numerous anti-cancer therapies, including TKIs and chemotherapy.2, 3, 17, 18, 19, 20, 21, 22 In AML, activated IGF-1R signaling has been linked to cytarabine resistance, a drug included in every AML treatment schedule.17 Notably, in several cancer cell lines, a small subpopulation of drug-tolerant cancer cells exists that maintains their viability, after treatment with a lethal drug dose, via engagement of the IGF-1R.18The activity of the IGF-1R is tightly controlled at multiple levels, including their processing, endocytosis, trafficking and availability of its ligands.4 Ligand bioavailability is partly controlled by the family of secreted insulin-like growth factor-binding protein (IGFBP1 to IGFBP6), which can bind to IGFs therewith regulating the interaction of these ligands to their receptors. However, as IGFBPs are able to induce IGF-dependent and IGF-independent effects, the results of several studies on their role in cancer cell survival appeared to be controversial and complex.23, 24 In addition to IGFBPs, various IGFBP-related proteins have been identified.23, 25 One of these is the IGFB-related protein 1, also known as insulin-like growth factor-binding protein-7 (IGFBP7). IGFBP7 has 30% homology to IGFBP1 to IGFBP6 in its N-terminal domain and functions predominantly as a tumor suppressor.23, 24, 25, 26 In contrast to IGFBP1 to IGFBP6, which bind to the IGFs,23 IGFBP7 is a secreted protein that can directly bind to the IGF-1R and thereby inhibits its activity.27 The abundance of IGFBP7 is inversely correlated with tumor progression in hepatocellular carcinoma.28 Importantly, decreased expression of IGFBP7 has been associated with therapy resistance29, 30 and increasing IGFBP7 levels can inhibit melanoma and breast cancer growth.31, 32 IGFBP7 was originally identified as being involved in Raf-mediated apoptosis and senescence33 and also has been shown to induce senescence in mesenchymal stromal cells.34We established that IGFBP7 induces a cell cycle block and apoptosis in AML cells and cooperates with chemotherapy in the induction of leukemia cell death. AML patients with low IGFBP7 expression have a worse outcome than patients with high IGFBP7 expression, indicating that AML patients might benefit from a combination therapy consisting of chemotherapy and IGFBP7. Our results define IGFBP7 as a focus to enhance chemotherapy efficacy and improve AML patient survival.  相似文献   

5.
6.
7.
8.
Tumor heterogeneity is in part determined by the existence of cancer stem cells (CSCs) and more differentiated tumor cells. CSCs are considered to be the tumorigenic root of cancers and suggested to be chemotherapy resistant. Here we exploited an assay that allowed us to measure chemotherapy-induced cell death in CSCs and differentiated tumor cells simultaneously. This confirmed that CSCs are selectively resistant to conventional chemotherapy, which we revealed is determined by decreased mitochondrial priming. In agreement, lowering the anti-apoptotic threshold using ABT-737 and WEHI-539 was sufficient to enhance chemotherapy efficacy, whereas ABT-199 failed to sensitize CSCs. Our data therefore point to a crucial role of BCLXL in protecting CSCs from chemotherapy and suggest that BH3 mimetics, in combination with chemotherapy, can be an efficient way to target chemotherapy-resistant CSCs.Colorectal cancer is the third most common cancer worldwide.1, 2 Patients with advanced stage colorectal cancer are routinely treated with 5-fluorouracil (5-FU), leucovorin and oxaliplatin (FOLFOX), or with 5-FU, leucovorin and irinotecan (FOLFIRI), often in combination with targeted agents such as anti-VEGF or anti-EGFR at metastatic disease.3, 4, 5, 6 Despite this intensive treatment, therapy is still insufficiently effective and chemotherapy resistance occurs frequently. Although still speculative, it has been suggested that unequal sensitivity to chemotherapy is due to an intratumoral heterogeneity that is orchestrated by cancer stem cells (CSCs) that can self-renew and give rise to more differentiated progeny.7, 8 When isolated from patients, CSCs efficiently form tumors upon xenotransplantation into mice which resemble the primary tumor from which they originated.9, 10, 11 In addition, many xenotransplantation studies have emphasized the importance of CSCs for tumor growth.9, 10, 11, 12 Colon CSCs were originally isolated from primary human colorectal tumor specimens using CD133 as cell surface marker and shown to be highly tumorigenic when compared with the non-CSCs population within a tumor.9, 10 Later, other cell surface markers as well as the activity of the Wnt pathway have been used to isolate colon CSCs from tumors.12, 13 Spheroid cultures have been established from human primary colorectal tumors that selectively enrich for the growth of colon CSCs,11, 12 although it is important to realize that these spheres also contain more differentiated tumor cells.12 In agreement, we have shown that the Wnt activity reporter that directs the expression of enhanced green fluorescent protein (TOP-GFP) allows for the separation of CSCs from more differentiated progeny in the spheroid cultures.12CSCs are suggested to be responsible for tumor recurrence after initial therapy, as they are considered to be selectively resistant to therapy.11, 14 Conventional chemotherapy induces, among others, DNA damage and subsequent activation of the mitochondrial cell death pathway, which is regulated by a balance between pro- and anti-apoptotic BCL2 family members.15 Upon activation of apoptosis, pro-apoptotic BH3 molecules are activated and these may perturb the balance in favor of apoptosis initiated by mitochondrial outer membrane polarization (MOMP), release of cytochrome c and subsequent activation of a caspase cascade.The apoptotic balance of cancer cells can be measured with the use of a functional assay called BH3 profiling.16 BH3 profiling is a method to determine the apoptotic ‘priming'' level of a cell by exposing mitochondria to standardized amounts of roughly 20-mer peptides derived from the alpha-helical BH3 domains of BH3-only proteins and determining the rate of mitochondrial depolarization. Using this approach, priming was measured in various cancers and compared with normal tissues.17, 18 In all cancer types tested, the mitochondrial priming correlated well with the observed clinical response to chemotherapy. That is, cancers that are highly primed are more chemosensitive, whereas chemoresistant tumor cells and normal tissues are poorly primed.17, 18 This suggests that increasing mitochondrial priming can potentially increase chemosensitivity, which can be achieved by directly inhibiting the anti-apoptotic BCL2 family members.18 To this end, small-molecule inhibitors, so-called BH3 mimetics, have been developed. ABT-737 and the highly related ABT-263 both inhibit BCL2, BCLXL and BCLW19, 20, 21 and were shown to be effective in killing cancer cells in vitro and in vivo21 with a preference for BCL2.19, 22 As BCL2 protein expression is often upregulated in hematopoietic cancers, it represents a promising target, which was supported by high efficacy of these BH3 mimetics in animal experiments.21 However, in vivo efficacy is limited due to thrombocytopenia, which relates to a dependence of platelets on BCLXL for survival.23, 24 To overcome this toxicity, a BCL2-specific compound, ABT-199, was developed.25 Souers et al.25 showed that inhibition of BCL2 using ABT-199 blocks tumor growth of acute lymphoblastic leukemia cells in xenografts. In addition to the single compound effects of ABT-199, combination with rituximab inhibited growth of non-Hodgkin''s lymphoma, mantle cell lymphoma and acute lymphoblastic leukemia tumor cells growth in vivo.25 Moreover, highly effective tumor lysis was observed in all three patients with chronic lymphocytic leukemia that were treated with ABT-199.25 More recently, a BCLXL-specific compound, WEHI-539, was discovered using high-throughput chemical screening.26As the apoptotic balance appears a useful target for the treatment of cancers and CSCs have been suggested to resist therapy selectively, we set out to analyze whether specifically colon CSCs are resistant to therapy and whether this is due to an enhanced anti-apoptotic threshold, specific to CSCs. To study chemosensitivity, we developed a robust single cell-based analysis in which we can measure apoptosis simultaneously in CSCs and their differentiated progeny. Utilizing this system we showed that colon CSCs and not their differentiated progeny are resistant to chemotherapeutic compounds and that this was due to the fact that these cells are less primed to mitochondrial death. Furthermore, inhibition of anti-apoptotic BCLXL molecule with either ABT-737 or WEHI-539, but not ABT-199, breaks this resistance and sensitizes the CSCs to chemotherapy.  相似文献   

9.
10.
Pancreatic cancer is characterized by a microenvironment suppressing immune responses. RIG-I-like helicases (RLH) are immunoreceptors for viral RNA that induce an antiviral response program via the production of type I interferons (IFN) and apoptosis in susceptible cells. We recently identified RLH as therapeutic targets of pancreatic cancer for counteracting immunosuppressive mechanisms and apoptosis induction. Here, we investigated immunogenic consequences of RLH-induced tumor cell death. Treatment of murine pancreatic cancer cell lines with RLH ligands induced production of type I IFN and proinflammatory cytokines. In addition, tumor cells died via intrinsic apoptosis and displayed features of immunogenic cell death, such as release of HMGB1 and translocation of calreticulin to the outer cell membrane. RLH-activated tumor cells led to activation of dendritic cells (DCs), which was mediated by tumor-derived type I IFN, whereas TLR, RAGE or inflammasome signaling was dispensable. Importantly, CD8α+ DCs effectively engulfed apoptotic tumor material and cross-presented tumor-associated antigen to naive CD8+ T cells. In comparison, tumor cell death mediated by oxaliplatin, staurosporine or mechanical disruption failed to induce DC activation and antigen presentation. Tumor cells treated with sublethal doses of RLH ligands upregulated Fas and MHC-I expression and were effectively sensitized towards Fas-mediated apoptosis and cytotoxic T lymphocyte (CTL)-mediated lysis. Vaccination of mice with RLH-activated tumor cells induced protective antitumor immunity in vivo. In addition, MDA5-based immunotherapy led to effective tumor control of established pancreatic tumors. In summary, RLH ligands induce a highly immunogenic form of tumor cell death linking innate and adaptive immunity.Patients diagnosed with pancreatic cancer face a poor prognosis due to early metastasis and therapy resistance, resulting in a 5-year survival rate of only 6%.1 Treatment options for inoperable tumors are limited and offer little benefit for the patients. But even after tumor resection most patients relapse and succumb to their disease, as evidenced by a 5-year survival rate of 20%.2 Novel treatment strategies such as immunotherapy are being investigated.3 Pancreatic cancer is characterized by an immunosuppressive microenvironment, which is mediated by cytokines such as TGF-β, modulation of antigen-presenting cells, impaired T-cell effector function as well as recruitment of regulatory T cells and myeloid-derived suppressor cells.4 Immunosuppressive factors correlate with a poor prognosis for patients with pancreatic cancer.5, 6, 7, 8 On the other hand, T-cell infiltrates of the tumor were found to be a positive prognostic factor.9 The major challenge for immunotherapy will be to counteract immunosuppressive mechanisms for tipping the balance toward productive immune responses against the tumor.Tumor cell death occurs spontaneously in fast growing tumors or is induced by specific therapies, such as cytotoxic agents or irradiation. Several forms of cell death, such as apoptosis, necrosis, autophagy, mitotic catastrophe and senescence can be discriminated. It appears that the conditions leading to tumor cell death dictate immunological consequences.10, 11 In most circumstances, cell death is immunologically silent, leading to tolerance rather than immunity. In specific situations, dying cells release immunogenic signals to the cell surface or the extracellular space leading to the activation of antigen-presenting cells, such as DCs, and facilitating antigen uptake and presentation. These signals are collectively called danger-associated molecular patterns (DAMPs) and include calreticulin exposure on the outer cell membrane, release of heat shock proteins, HMGB1, DNA, RNA, ATP and uric acid crystals, or the secretion of proinflammatory cytokines, such as IL-1 and IL-6.12 Evidence has accumulated that certain chemotherapeutic drugs, which were traditionally considered to mediate antitumor effects via their antiproliferative properties, induce an immunogenic form of cell death leading to tumor-directed immunity.11, 13Immune responses against viruses share many features with those against tumors. Mimicking a viral infection can be exploited for tumor immunotherapy. Double-stranded viral RNA is recognized by cytosolic pattern recognition receptors called RIG-I-like helicases (RLH), including retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated antigen 5 (MDA5).14, 15, 16 Synthetic RLH ligands include 5′-triphosphate RNA (ppp-RNA) for RIG-I, and polyinosinic:polycytidylic acid (poly(I:C)) for MDA5. RLH initiate a signaling cascade mediated by IFN regulatory factor 3 (IRF-3), IRF-7 and NF-κB, leading to an antiviral response program characterized by the production of type I IFN and other innate immune response genes.17, 18 In addition, RLH signaling induces intrinsic apoptosis in tumor cells, which are highly susceptible, as compared with nonmalignant cells.19, 20 RLH ligands have been evaluated as therapeutic agents in preclinical tumor models for melanoma, ovarian cancer and pancreatic cancer.19, 21, 22, 23, 24 Therapeutic efficacy was enhanced by combining RNAi-mediated gene silencing with RIG-I activation in a single RNA molecule.21, 24 A ppp-siRNA targeting the anti-apoptotic protein Bcl-2 to promote tumor apoptosis showed therapeutic efficacy in experimental melanoma.24 In this model, the antitumor effect was dependent on NK cells. To counteract tumor-induced immunosuppression, our group generated a ppp-siRNA silencing TGF-β1, which showed therapeutic efficacy in an orthotopic model of pancreatic cancer.21 Interestingly, with this approach CD8+ T cells mediated antitumor efficacy. Others reported that treatment of human ovarian cancer cells with RLH ligands resulted in phagocytosis of apoptotic tumor cells by monocyte-derived DCs and DC activation.22, 23 Together, these findings indicate that RLH-induced tumor cell death may promote adaptive immunity against tumors. However, mechanisms leading to DC activation and the impact on tumor antigen cross-presentation by DCs, which defines immunogenic cell death, have not been explored.In this study, we investigated the effects of RLH-induced tumor cell death on DC activation, antigen uptake and cross-presentation of tumor antigen by primary murine DC populations. We also studied mechanisms leading to DC activation using mice deficient in pathways of TLR, RAGE, inflammasome and type I IFN signaling. In addition, we assessed the immunogenicity and therapeutic efficacy of RLH-based immunotherapy in two different mouse models for pancreatic cancer.  相似文献   

11.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

12.
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.Artemisinin, a sesquiterpene lactone isolated from the Chinese herb Artemisia annua L., has profound activity against malaria.1 Artemisinin contains an endoperoxide moiety that reacts with iron to produce toxic reactive oxygen species (ROS). When malaria parasite (Plasmodia) consumes iron-rich haemoglobin within its acidic food vacuole in erythrocytes, the exposure of artemisinin to haem-derived iron results in lethal ROS production that exerts fatal toxicity to the parasite.2 Therefore, artemisinin, its water-soluble derivative artesunate (ART) and other analogues are potent in killing malarial parasites.1,3Cancer cells contain substantial free iron, resulting from their higher-rate iron uptake via transferrin receptors compared with normal cells. Therefore, artemisinin-based drugs such as ART possess selective toxicity to cancer cells.4, 5, 6 Importantly, the pharmacokinetics and tolerance of ART as an anti-malarial drug have been well documented, with clinical studies showing excellent safety. Collectively, these properties make artemisinin-based compounds attractive drug candidates for cancer chemotherapy. Artemisinin and ART have been shown to induce cell death in multiple cancer cells, including colon, breast, ovarian, prostate,7 pancreatic8 and leukaemia9 cancer cells. Preliminary in vivo experiments also indicate the therapeutic potential for these drugs as anti-cancer treatments. In animal models, artemisinin or ART has shown promising results in Kaposi Sarcoma,10 pancreatic cancer11 and hepatoma,12 while compassionate use of ART in uveal melanoma patients fortifies standard chemotherapy potential for the patients.13 Currently, ART is on clinical trial for breast cancer treatment (ClinicalTrials.gov ID: NCT00764036).Programmed cell death (PCD) is one of the critical terminal paths for the cells of metazoans. Among PCD, apoptosis has been well studied and it is known that caspase activation is essential in this process.14 In addition to apoptosis, necroptosis is another form of PCD. The RIP1-RIP3 complex highlights the signals that regulate necroptosis.15, 16, 17 Artemisinin derivatives, mostly ART, have been suggested to lead to apoptosis via ROS production in cancer cells. Efforts have been focused on ROS-mediated mitochondrial apoptosis,9,18,19 and DNA damage20 in cancer cells. Recent data suggest that artemisinin and its derivatives may induce cell death or inhibit proliferation through diverse mechanisms in different cell types. Artemisinin or its analogues were shown to inhibit cell proliferation in multiple cancer cells by regulating cell-cycle arrest21, 22, 23 or inducing apoptosis.24,25 Nevertheless, the detailed molecular mechanisms underlying artemisinin or ART-induced cell death are poorly understood, thus need to be further addressed.Neurofibromatosis 2 (NF2) is caused by the loss of NF2 gene encoding Merlin protein. NF2 gene mutations cause the low grade tumour syndrome, composed of schwannomas, meningiomas and ependymomas.26 All spontaneous schwannomas, the majority of meningiomas and a third of ependymomas are caused by NF2 gene mutations. Notably, approximately 10% of intracranial tumours are schwannomas.27 Interestingly, NF2 gene mutations are also found in a variety of cancers, including breast cancer and mesothelioma.28, 29, 30 The low grade tumours caused by NF2 gene mutations do not respond well to current cancer drugs and therapy is restricted to surgery and radiosurgery.26 Therefore, there is a need for drug treatment of the diseases. Here, we show that ART sufficiently induced schwannoma cell death in both RT4 cell line and human primary cells. Importantly, we show, for the first time, that ART-induced cell death is largely dependent on necroptosis. Our data suggest that ART has great potential in schwannoma chemotherapy, especially when used in synergy with an apoptosis-inducing drug and/or an autophagy-inhibitory drug.  相似文献   

13.
14.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

15.
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization.Many diseases, including rheumatoid arthritis, pulmonary fibrosis, adult respiratory distress syndrome, and inflammatory bowel disease,1, 2, 3, 4 are commonly marked by impaired resolution of inflammation that is linked to defects in the phagocytic clearance of apoptotic cells.5, 6, 7 Apoptotic cell (AC) clearance normally eliminates a plethora of pro-inflammatory stimuli,8, 9 and the recognition of ACs by phagocytes10 limits progression to necrosis,11 suppresses pro-inflammatory mediator production, and induces IL-10 and TGF-β release.12, 13 As defective clearance of ACs is associated with the development of inflammatory disease and autoimmunity,14, 15 new therapeutic approaches designed to increase the capacity of phagocytes to remove ACs could effectively promote the resolution of inflammation.Phagocytosis of ACs can be regulated by soluble mediators, including cytokines,16, 17 prostaglandins and lipoxins,17, 18, 19 serum proteins,20 agonists of Liver X receptors (LXRs),17, 21 and glucocorticoids (GC).17, 22 In particular, LXR agonists and GCs promote phagocytosis of ACs predominantly via a Tyro3/Axl/Mer (TAM) receptor tyrosine kinase (RTK)-dependent pathway.17, 21, 23 There are two established ligands for the TAM RTKs, Protein S (gene name Pros1), which activates Tyro3 and Mer, and Gas6, which activates all three TAMs,24, 25 although other ligands have been suggested.26, 27 The amino terminal Gla domains of Protein S and Gas6 bind to phosphatidylserine (PtdSer) on the plasma membrane of ACs,28 a potent ‘eat-me'' signal by which ACs are recognized by phagocytes.29 TAM receptors bind to the carboxy terminal domains of Protein S and Gas6, which effectively act as molecular ‘bridges'' between PtdSer on the AC and TAM receptors on the phagocyte.17, 30, 31 TAM receptor- and ligand-deficient mice exhibit defective phagocytic pruning of photoreceptor outer segments by retinal pigment epithelial (RPE) cells of the eye,32, 33, 34 defective clearance of apoptotic germ cells by Sertoli cells of the testis,35 and defective clearance of ACs by macrophages/dendritic cells in lymphoid organs.36 These phenotypes are also detectable in Mer (gene name Mertk) single knockouts.37 In addition to phagocytic clearance, TAM signaling also has a pivotal role in controlling the innate immune response to pathogenic stimuli.13, 17, 38Although the importance of Mer in the internalization of ACs by macrophages is now well-established, this receptor has been thought not to have a significant role in the initial ‘tethering'' of ACs to the macrophage surface.36, 39 In their studies, Scott et al.36 used peritoneal macrophages for which tethering of ACs has now been shown to be mediated by T-cell immunoglobulin and mucin domain-containing molecule 4 (TIM4).39 Subsequent internalization of tethered ACs is then mediated by either integrin αvβ3- or Mer-mediated signaling.39, 40 Similarly, for RPE cells, the initial capture of photoreceptor outer segments by RPE cells required the integrin αvβ5,41 with Mer-dependent signaling necessary for subsequent internalization. To further probe the mechanistic role of Mer in AC recognition and engulfment, we have now examined macrophages that predominantly use a Mer-dependent AC phagocytosis mechanism.17, 23 We show that in these cells, which do not express TIM4, Mer has the capacity to serve a unique dual role in mediating both tethering of ACs to the macrophage surface as well as subsequent AC engulfment.  相似文献   

16.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

17.
A signaling pathway that induces programmed necrotic cell death (necroptosis) was reported to be activated in cells by several cytokines and various pathogen components. The major proteins participating in that pathway are the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL). Recent studies have suggested that MLKL, once activated, mediates necroptosis by binding to cellular membranes, thereby triggering ion fluxes. However, our knowledge of both the sequence of molecular events leading to MLKL activation and the subcellular sites of these events is fragmentary. Here we report that the association of MLKL with the cell membrane in necroptotic death is preceded by the translocation of phosphorylated MLKL, along with RIPK1 and RIPK3, to the nucleus.Apart from the apoptotic cell death pathway that ligands of the tumor necrosis factor (TNF) family can activate, these ligands and various other inducers, including the interferons and various pathogen components, have in recent years been found also to trigger a signaling cascade that induces programmed necrotic death (necroptosis). This cascade encompasses sequential activation of the protein kinases RIPK1 and RIPK3 and the pseudokinase mixed lineage kinase domain-like protein (MLKL).1, 2, 3, 4, 5 RIPK3-mediated phosphorylation of MLKL triggers its oligomerization, which is necessary and sufficient for the induction of cell death,6, 7, 8 and can also trigger some non-deadly functions.9 MLKL was recently suggested to trigger cell death by binding to cellular membranes and initiating ion fluxes through them.6, 7, 8, 10 However, its exact molecular target in death induction is contentious.6, 8, 10, 11, 12 Current knowledge of the subcellular sites of MLKL action is based mainly on determination of the location of this protein close to the time of cell death. Here we present a detailed assessment of the cellular location of MLKL at different times following its activation. Our findings indicate that before cell death, MLKL translocates to the nucleus along with RIPK1 and RIPK3.  相似文献   

18.
19.
Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.Owing to the heterogeneous nature and scanty vascularization, the access of anticancer regimen to all strata of the tumor is one of the major challenges in cancer therapy. Current response rate to chemotherapy is far from desirable and warrants formulating the strategies to enhance specificity and efficacy of the anticancer regimens. Of late, the phenomenon of bystander effect (BE), which refers to transmission of death signals from the drug-exposed cells to the unexposed cells, is being explored to improve the therapeutic response. Although BE has been well documented in radiotherapy1, 2 and experimental approaches of gene therapy,3, 4 very limited information is available with respect to conventional chemotherapeutic drugs. We have previously demonstrated the chemotherapy-induced bystander killing in breast cancer cells5 and hepatocellular carcinoma cells.6 Recently, other groups also have demonstrated the occurrence of chemotherapy-induced BE in breast cancer7 and lung cancer,8, 9 which is in agreement with our studies. BE has been shown to be dependent on cell type and class of drugs,6 and the role of tumor microenvironment in response to chemotherapeutic drug-induced BE is poorly understood.Cervical cancer is one of the most common solid tumors. Mitomycin C (MMC), a DNA alkylating agent, has been widely used in this malignancy as a constituent of combination therapy.10 From the pharmacological point of view, MMC is effective at relatively low dose with minimal organ-associated toxicity11 and it has been shown to activate innate immunity.12 However, therapeutic efficacy of MMC principally depends on other drug types in combination therapy.13 Therefore, a well-designed strategy that could enhance the efficacy of MMC is desirable. MMC has been demonstrated to induce BE in hepatocellular carcinoma, but not in cervical cancer cells.6 Although the precise mechanisms of bystander killing remain elusive, we have previously reported the involvement of death ligands,5, 6 which was later supported by other studies.7, 8, 9 The ability of cancer cells to escape programmed cell death has a critical role in the survival of cancer cells and tumor progression. Despite the presence of cellular apoptotic factors, cancer cells reprogram their molecular events and signaling to evade apoptosis.14 Moreover, it has been reported that exposure to proteasomal inhibitor inhibits the growth of various cancer cells and sensitize them to death ligand-mediated death by stabilizing death receptors.15, 16, 17 Considering these notions, we speculated that non-functionality of death receptors could be one of the possible factors associated with defective BE in cervical cancer. We, therefore, hypothesized that treating cervical cancer cells with combination of MMC and proteasomal inhibitor could elicit BE, and thereby may significantly improve the therapeutic outcome.Till date, studies explicate cancer cells exposed to chemotherapy as the effector cells in inducing bystander-mediated killing. However, owing to the heterogeneous nature of cellular population in tumor, other cellular components are also likely to have a key role in inducing BE. Tumor microenvironment consists of a heterogeneous mass of malignant as well as nonmalignant cells. The nonmalignant cells include endothelial, fibroblast and immune cells that establish multitude of interactions among themselves and also with malignant cells.9 Macrophages are the most abundant immune cells present in tumors, also termed as tumor-associated macrophages (TAMs).18 TAMs are differentiated monocytes that infiltrate the tumor microenvironment, and are exposed to chemotherapeutic regimen. Studies have demonstrated that TAMs could account for approximately more than 60% of tumor mass in some cancers.19, 20, 21 TAMs exposed to radiations2 and chemotherapy22 have been shown to have a significant role in inducing BE. Studies support the notion that targeting TAMs could improve the therapeutic index of various drugs.10, 23 Increased sensitivity to cyclophosphamide14 and cisplatin24 has been shown in co-culture system involving cancer cells and macrophages. Under chemotherapy, increased recruitment of macrophages with enhanced expression of tumoricidal factors like perforin and granzyme,22 death ligands10 or ROS 25 has been reported in tumors. Therefore, we speculated that BE could further be amplified by infiltrating macrophages resulting in enhanced therapeutic efficacy of anticancer regimens. In the present study, we evaluated combination effect of MMC and MG132 in enhancing bystander killing of cancer cells in vitro and in vivo, in part, through the involvement of cancer cells and TAMs. Herein, we demonstrate that stabilization of Fas on cervical cancer cells facilitates dramatic reduction in tumor progression as a consequence of increase in apoptosis. This study could be helpful in designing novel therapeutic strategies in treating cancer by involving proteasomal inhibitors in combination with chemotherapeutic drugs that specifically activate death receptor-mediated killing.  相似文献   

20.
The p62/SQSTM1 adapter protein has an important role in the regulation of several key signaling pathways and helps transport ubiquitinated proteins to the autophagosomes and proteasome for degradation. Here, we investigate the regulation and roles of p62/SQSTM1 during acute myeloid leukemia (AML) cell maturation into granulocytes. Levels of p62/SQSTM1 mRNA and protein were both significantly increased during all-trans retinoic acid (ATRA)-induced differentiation of AML cells through a mechanism that depends on NF-κB activation. We show that this response constitutes a survival mechanism that prolongs the life span of mature AML cells and mitigates the effects of accumulation of aggregated proteins that occurs during granulocytic differentiation. Interestingly, ATRA-induced p62/SQSTM1 upregulation was impaired in maturation-resistant AML cells but was reactivated when differentiation was restored in these cells. Primary blast cells of AML patients and CD34+ progenitors exhibited significantly lower p62/SQSTM1 mRNA levels than did mature granulocytes from healthy donors. Our results demonstrate that p62/SQSTM1 expression is upregulated in mature compared with immature myeloid cells and reveal a pro-survival function of the NF-κB/SQSTM1 signaling axis during granulocytic differentiation of AML cells. These findings may help our understanding of neutrophil/granulocyte development and will guide the development of novel therapeutic strategies for refractory and relapsed AML patients with previous exposure to ATRA.p62 or sequestosome 1 (p62/SQSTM1) is a scaffold protein, implicated in a variety of biological processes including those that control cell death, inflammation, and metabolism.1, 2 Through its multi-domain structure, p62/SQSTM1 interacts specifically with key signaling proteins, including atypical PKC family members, NF-κB, and mTOR to control cellular responses.3, 4, 5, 6, 7 p62/SQSTM1 functions also as a key mediator of autophagy. Through its interaction with LC3, an essential protein involved in autophagy, p62/SQSTM1 selectively directs ubiquitinated substrates to autophagosomes leading to their subsequent degradation in lysosomes.8, 9 At the molecular level, p62/SQSTM1 acts as a pro-tumoral molecule by ensuring efficient and selective activation of cell signaling axes involved in cell survival, proliferation, and metabolism (i.e., NF-κB, mTOR, and Nrf-2 pathways).3, 5, 6, 7, 10, 11, 12, 13 p62/SQSTM1 can also signal anti-tumoral responses either by inactivating the pro-oncogenic signaling through BCR-ABL14 and Wnt pathways15, 16 or by inducing the activation of caspase 8, a pro-death protein.17, 18 Interestingly, in response to stress, autophagy promotes the degradation of p62, thus limits the activation of p62-regulatory pathways that control tumorigenesis.10 In addition, p62/SQSTM1 controls pathways that modulate differentiation of normal and cancerous cells. For example, p62/SQSTM1 has been shown to antagonize basal ERK activity and adipocyte differentiation.19 In contrast, p62/SQSTM1 favors differentiation of osteoclasts,20 osteoblasts,21 neurons,22 megakaryocytes23 and macrophages.24 The role and regulation of p62/SQSTM1 during leukemia cell differentiation has been poorly documented.Acute myeloid leukemia (AML) is a hematological disease characterized by multiple deregulated pathways resulting in a blockade of myeloid precursors at different stages of maturation.25, 26 Acute promyelocyte leukemia (APL) is the M3 type of AML characterized by an arrest of the terminal differentiation of promyelocytes into granulocytes and frequently associated with the expression of the oncogenic PML-RAR alpha fusion gene.27, 28 All-trans retinoic acid (ATRA), a potent activator of cellular growth arrest, differentiation, and death of APL cells, has been shown to effectively promote complete clinical remission of APL when combined with chemotherapy.29, 30, 31 Despite the success of this treatment, some APL patients are refractory to ATRA treatment or relapse owing to the development of resistance to ATRA in leukemia cells.32, 33, 34Our previous results revealed that autophagy flux is activated during granulocyte differentiation of myeloid leukemia cell lines induced by ATRA.35 In the present study, we observed that p62/SQSTM1, an autophagic substrate, is markedly upregulated at both mRNA and protein levels during the granulocytic differentiation process. Here, we investigated the regulation and the function of p62/SQSTM1 during AML cells differentiation into neutrophils/granulocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号