首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gallbladder carcinoma (GBC) is one of the mostly aggressive and fatal malignancies. However, little is known about the oncogenic genes that contributed to the development of GBC. Zinc finger X-chromosomal protein (ZFX) was a novel member of the Krueppel C2H2-type zinc-finger protein family and its down-regulation led to impaired cell growth in human laryngeal squamous cell carcinoma. Here, we aim to investigate the function of ZFX in GBC cell proliferation and migration. Loss of function analysis was performed on GBC cell line (GBC-SD) using lentivirus-mediated siRNA against ZFX. The proliferation, in vitro tumorigenesis (colony-formation) ability as well as cell migration was significantly suppressed after GBC-SD cells which were infected with ZFX-siRNA-expressing lentivirus (Lv-shZFX). Our finding suggested that ZFX promoted the growth and migration of GBC cells and could present a potential molecular target for gene therapy of GBC.  相似文献   

2.
Gallbladder cancer (GBC) is an aggressive disease in which epithelial-mesenchymal transition (EMT) plays a critical role. Whether inhibition of mTOR effects via EMT reversal in GBC remains unclear. Using genetic and pharmacologic inhibitions of mTOR, we investigated the changes of EMT levels in GBC cells. Expressions of EMT related genes were also studied. Migration and invasion assays were carried out and in vivo tumour metastasis mouse models were established. Circulating tumour DNA was quantified. We used EMT index (ratio of Vimentin/Ecadherin expression) to profile EMT levels. We found that inhibition of mTOR using shRNAs and rapamycin inhibited EMT in GBC-SD gallbladder cancer cells. Inhibition of mTOR inhibited EMT in GBC-SD cells in TGF-β-dependent manner, which was contributed majorly by mTORC2 inhibition. Rapamycin decreased invasiveness and migration of GBC-SD cells in vitro and in vivo. We have in the current study shown that rapamycin diminishes the ability of invasion and migration of GBC via inhibition of TGF-β-dependent EMT. Our findings contribute to the understanding of the carcinogenesis of GBC.  相似文献   

3.
Proliferation is one of the significant hallmarks of gallbladder cancer, which is a relatively rare but fatal malignance. Aim of this study was to examine the biological impact and molecular mechanism of the candidate hub-gene on the proliferation and tumorigenesis of gallbladder cancer. We analyzed the differentially expressed genes and the correlation between these genes with MKI67, and showed that KIF11 is one of the major upregulated regulators of proliferation in gallbladder cancer (GBC). The Gene Ontology, Gene Sets Enrichment Analysis and KEGG Pathway analysis indicated that KIF11 may promote GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. Gain-of-function and loss-of-function assay demonstrated that KIF11 regulated GBC cell cycle and cancer cell proliferation in vitro. GBC cells exhibited G2M phase cell cycle arrest, cell proliferation and clone formation ability reduction after treatment with Monastrol, a specific inhibitor of KIF11. Xenograft model showed that KIF11 promotes GBC growth in vivo. Rescue experiments showed that KIF11-induced GBC cell proliferation dependented on ERBB2/PI3K/AKT pathway. Moreover, we found that H3K27ac signals are enriched among the promoter region of KIF11 in the UCSC Genome Browser Database. Differentially expressed analysis showed that EP300, a major histone acetyltransferase modifying H3K27ac signal, is highly expressed in gallbladder cancer and correlation analysis illustrated that EP300 is positively related with KIF11 in almost all the cancer types. We further found that KIF11 was significantly downregulated in a dose-dependent and time-dependent manner after histone acetylation inhibitor treatment. The present results highlight that high KIF11 expression promotes GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. The findings may help deepen our understanding of mechanism underlying GBC cancer development and development of novel diagnostic and therapeutic target.  相似文献   

4.
Lung cancer is the leading cause of death in individuals with malignant disease. Non‐small‐cell lung cancer (NSCLC) is the most common type of lung cancer, and chemotherapy drugs such as cisplatin are the most widely used treatment for this disease. Baicalein is a purified flavonoid compound that has been reported to inhibit cancer cell growth and metastasis and increase sensitization to chemotherapeutic drugs via different pathways. Therefore, we assessed the effects of baicalein on the proliferation, apoptosis and cisplatin sensitivity in the NSCLC A549 and H460 cell lines and determined the pathways through which baicalein exerts its effects. Baicalein was slightly toxic to normal human bronchial NHBE cells but inhibited growth, induced apoptosis and increased cisplatin sensitivity in A549 and H460 cells. Baicalein down‐regulated miR‐424‐3p, up‐regulated PTEN expression and down‐regulated expression of PI3K and p‐Akt in A549 and H460 cells. Dual‐luciferase reporter assay demonstrated that PTEN is a target gene of miR‐424‐3p, and overexpression of miR‐424‐3p or silencing of PTEN partially attenuated the effects of baicalein on A549 and H460 cells. Taken together, we concluded that baicalein inhibits cell growth and increases cisplatin sensitivity to A549 and H460 cells via down‐regulation of miR‐424‐3p and targeting the PTEN/PI3K/Akt pathway.  相似文献   

5.
Vascular endothelial growth factor-C (VEGF-C) has a well-defined action on neoplastic lymphangiogenesis and angiogenesis through VEGF receptor-3 (VEGFR-3) and VEGFR-2, respectively, which are generally expressed in endothelial cells. The function of the VEGF-C/receptors pathway in tumor cell types is largely unknown. In this study, we examined the expression and role of VEGF-C/receptors in gallbladder cancer (GBC) cells. We examined the expression of VEGF-C in 50 surgical specimens from gallbladder cancer and three human gallbladder cancer cell lines. Both siRNA and neutralizing antibody to deplete the expression of VEGF-C were used to characterize the biological effect of VEGF-C in GBC NOZ cells. Furthermore, we examined the expression of its receptors, VEGFR-3 and VEGFR-2, in three human GBC cell lines. Our results are as follows: The expression of VEGF-C in the invasive marginal portion was significantly higher than the expression in the central portions. All the three GBC cell lines expressed VEGF-C. Treatment of NOZ cells with VEGF-C siRNA or a neutralizing antibody suppressed cell proliferation and invasion. Moreover, all the three GBC cell lines expressed VEGFR3, but only the NOZ cells expressed VEGFR-2 mRNA. Treatment of NOZ cells with a VEGFR-3 neutralizing antibody suppressed cell invasion, but treatment of NOZ cells with a VEGFR-2 neutralizing antibody suppressed cell proliferation and invasion. In conclusion, GBC cells express both VEGF-C and its receptors. VEGF-C may have a role in the progressive growth and invasion of human GBC through an autocrine mechanism.  相似文献   

6.
Gallbladder cancer (GBC) is one of the most lethal neoplasm and is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder cancer is extremely terrible partially due to metastasis. Thus, understanding the molecular pathways controlling metastasis of this lethal disease may provide new targets for targeted therapeutic approach. In this study, we investigated the function of nemo-like kinase (NLK) in GBC growth and migration. Lentivirus-mediated siRNA was employed to alleviate the expression level of NLK in GBC cell lines (GBC-SD and SGC-996). Real-time PCR and western-blot analysis demonstrated that both mRNA and protein levels of NLK in GBC-SD and SGC-996 cells were decreased after infection with NLK-siRNA-expressing lentivirus (Lv-shNLK). The proliferation and in vitro tumorigenesis (colony formation) ability as well as migration of GBC-SD and SGC-996 cells with low NLK expression decreased significantly. Our results suggested that NLK is a key regulator involved in proliferation and migration of GBC, and it could be used as a potential therapeutic target for GBC.  相似文献   

7.
8.
The incidence of gallbladder cancer (GBC) is relatively rare but a high degree of malignancy. The migration and invasion potential of GBC severely affects the prognosis of patients with GBC. Glycochenodeoxycholate (GCDC) is one of the most important components in GBC-associated microenvironment. However, the role of GCDC in the metastatic feature of GBC cells is not fully understood. First, the results of this study found that GCDC could effectively enhance the metastasis of GBC cells. Furthermore, GCDC could lead to the enhancement of epithelial to mesenchymal transition (EMT) phenotype in GBC cells, which is concerned to be an important mechanism of tumor metastasis. Further studies showed that GCDC treatment induced the upregulation of matrix metalloproteinase-3 (MMP3), MMP9, and SOCS3/JAK2/p-STAT3 signal pathway in GBC cells, which could regulate the level of EMT. Beside that, we also found the positive expression of farnesoid X receptor (FXR) in GBC cells and inhibition of FXR could significantly block the effect of GCDC on the metastasis of GBC cells. These results indicated that GCDC promoted GBC cells metastasis by enhancing the level of EMT and inhibition of FXR could significantly block the effect of GCDC. On one hand, FXR might be an indicator for predicting the metastasis of patient with GBC. On the other hand, FXR might serve as a potential antimetastasis target in GBC therapy.  相似文献   

9.
Long noncoding RNAs (lncRNAs) play roles in the development and progression of many cancers; however, the contributions of lncRNAs to human gallbladder cancer (GBC) remain largely unknown. In this study, we identify a group of differentially expressed lncRNAs in human GBC tissues, including prognosis‐associated gallbladder cancer lncRNA (lncRNA‐PAGBC), which we find to be an independent prognostic marker in GBC. Functional analysis indicates that lncRNA‐PAGBC promotes tumour growth and metastasis of GBC cells. More importantly, as a competitive endogenous RNA (ceRNA), lncRNA‐PAGBC competitively binds to the tumour suppressive microRNAs miR‐133b and miR‐511. This competitive role of lncRNA‐PAGBC is required for its ability to promote tumour growth and metastasis and to activate the AKT/mTOR pathway. Moreover, lncRNA‐PAGBC interacts with polyadenylate binding protein cytoplasmic 1 (PABPC1) and is stabilized by this interaction. This work provides novel insight on the molecular pathogenesis of GBC.  相似文献   

10.
11.
Bamboo shavings (Bambusae Caulis in Taeniam, BCT) are widely used as a traditional Chinese medicine to control hypertension and cardiovascular disease, and to alleviate fever, vomiting, and diarrhea. It has been demonstrated that BCT reduces ovalbumin-induced airway inflammation by regulating pro-inflammatory cytokines, and decreases tumor growth in tumor-bearing mice. However, the effects of BCT on the metastatic potential of malignant cancer cells and the detailed mechanism of its anti-metastatic activity have not been examined previously. In this study, we investigated whether an aqueous extract of BCT (AE-BCT) reduces the metastatic potential of HT1080 cells, and elucidated the underlying anti-metastatic mechanism. In addition, we examined whether AE-BCT administration inhibits pulmonary metastasis of intravenously injected B16F10 cells in C57BL/6J mice. AE-BCT (50–250 µg/ml) dose-dependently suppressed colony-forming activity under anchorage-dependent and -independent growth conditions. Pretreatment with AE-BCT efficiently inhibited cell migration, invasion, and adhesion. AE-BCT also dramatically suppressed PMA-induced MMP-9 activity and expression by blocking NF-κB activation and ERK phosphorylation. Production of intracellular ROS, a key regulator of NF-κB-induced MMP-9 activity, was almost completely blocked by pretreatment with AE-BCT. Furthermore, daily oral administration of AE-BCT at doses of 50 and 100 mg/kg efficiently inhibited lung metastasis of B16F10 cells injected into the tail veins of C57BL/6J mice with no systemic toxicity. These results demonstrate that AE-BCT significantly reduced the metastatic activity of highly malignant cancer cells by suppressing MMP-9 activity via inhibition of ROS-mediated NF-κB activation. These results indicate that AE-BCT may be a safe natural product for treatment of metastatic cancer.  相似文献   

12.
Tumor cells switch from an epithelial to a mesenchymal-like phenotype, which represents a key hallmark of human cancer metastasis, including gallbladder cancer (GBC). A large set of microRNAs (miRNAs/miRs) have been studied to elucidate their functions in initiating or inhibiting this phenotypic switching in GBC cells. In this paper, we attempted to identify the expression pattern of the miR-214/−3120 cluster and its mode of action in the context of GBC, with a specific focus being placed on their effects on EMT and autophagy in GBC cells. Human GBC cells GBC-SD were assayed for their migration, invasion, and autophagy using the Transwell chamber system, MDC staining, and transmission electron microscopy. The tumorigenicity and metastatic behavior of GBC-SD cells were tested in nude mice. The expression of EMT- and autophagy-specific markers (E-cadherin, N-cadherin, vimentin, ATG5, LC3II/LC3I, and Beclin1) was analyzed in cultured GBC-SD cells and in human GBC-SD xenografts. The E2F3 luciferase reporter activity in the presence of miR-214/−3120 was evaluated by a dual luciferase assay. The miR-214/−3120 was downregulated in GBC. Exogenous miR-214/−3120 inhibited the phenotypic switching of GBC cells from epithelial to mesenchymal, prevented autophagy, and suppressed the tumorigenicity and metastatic behavior of GBC-SD cells in vitro and in vivo. E2F3 was demonstrated to be the target gene of miR-214/−3120, and its knockdown in part mimicked the effect of miR-214/−3120 on the EMT, autophagy, tumorigenicity, and metastatic behavior of GBC-SD cells. These results demonstrated that the miR-214/−3120 cluster blocks the process of EMT and autophagy to limit GBC metastasis by repressing E2F3 expression.  相似文献   

13.
Securin and γ‐H2AX have been shown to regulate cell survival and genomic stability. However, it is still unknown how the expression and regulation of these proteins is altered following treatment with baicalein, a natural flavonoid extracted from the Scutellaria baicalensis root. In the present study, we investigate the possible roles of securin and γ‐H2AX in baicalein‐induced cancer cell death. Baicalein reduced cell viability in a variety of human cancer cell lines, including bladder, cervical, colon, and lung cancer cells. Interestingly, baicalein treatment (40–80 µM for 24 h) markedly inhibited securin expression, while the levels of γ‐H2AX were elevated. Abnormal spindle formation and chromosomal segregation were induced by baicalein. Furthermore, wild type HCT116 cancer cells had a higher incidence of cytotoxicity and apoptosis than securin‐null HCT116 cells following treatment with baicalein. In contrast, baicalein increased the levels of γ‐H2AX to a similar extent in both cell types. Transfection with H2AX siRNA further increased baicalein‐induced cell death. Additionally, blockade of the AKT pathway by treatment with wortmannin or AKT shRNA lowered the levels of γ‐H2AX and enhanced cytotoxicity in baicalein‐treated cells. Taken together, our findings suggest that the opposing effects of baicalein on securin and γ‐H2AX levels may be involved in the regulation of cell viability and genomic stability by this compound. J. Cell. Biochem. 111: 274–283, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Apart from primary tumor development and metastasis, cancer-associated thrombosis is the second cause of cancer death in solid tumor malignancy. However, the mechanistic insight into the development of gallbladder cancer (GBC) and cancer-associated thrombosis remains unclear. This study aimed to investigate the mechanistic role of Sciellin (SCEL) in GBC cell proliferation and the development of venous thromboembolism. The expression level of SCEL was determined by immunohistochemical staining. Roles of SCEL in gallbladder cancer cell were determined by molecular and cell biology methods. SCEL was markedly upregulated in GBC and associated with advanced TNM stages and a poor prognosis. Furthermore, SCEL interacted with EGFR and stabilized EGFR expression that activates downstream PI3K and Akt pathway, leading to cell proliferation. In addition, SCEL induces tumor cell IL-8 production that stimulates the formation of neutrophil extracellular traps (NETs), accelerating thromboembolism. In xenografts, SCEL-expressing GBCs developed larger tumors and thrombosis compared with control cells. The present results indicate that SCEL promotes GBC cell proliferation and induces NET-associated thrombosis, thus serving as a potential therapeutic target.Subject terms: Cancer microenvironment, Tumour biomarkers  相似文献   

15.
Our previous reports have shown that lamininglycopeptides (LN-GPs),the total glycopeptides prepared from laminin (LN),can prevent the experimental lung metastasis and liver metastasis of mouse cancer cells.In order to explore the anti-metastatic mechanism of LN-GPs,we studied the effects of LN-GPs on metastasisrelated behaviors of cancer cells in vitro.LN-GPs did not affect cell survival.However,LN-GPs inhibited cell attachment and spreading of S180 cells on LN-and Matrigelsubstrate in dose-dependent and time-dependent manners.Moreover,inhibition of cell attachment and spreading on Matrigel substrates were much greater on Matrigel substrate than on LN substrate.In the gresence of LN-GPs,S180 cells on LN substrate changed from a flattened polygonal shape to a round one,the migration of S180 cells on LN substrate decreased,and the number of a highly invasive human pulmonary giant carcinoma PG cells invading Matrigel filter in a Boyden chamber was reduced.LN-GPs thus have multiple inhibitory effects on cancer metastasisrelated behaviors.  相似文献   

16.
The transfer of sialic acids to the non-reducing terminal positions on sugar chains of glycoconjugates is catalyzed by sialyltransferases (STs). Increased sialylation is correlated with oncogenic transformation and metastatic potential. ST inhibitors may be potentially valuable as anti-cancer and anti-metastatic agents. In this study, we evaluated the effects of soyasaponin I (Ssa I), a known inhibitor of STs, on tumor metastasis through studying a highly metastatic cancer cell line B16F10. Ssa I specifically inhibited the expression of alpha2,3-linked sialic acids without affecting other glycans on the B16F10 cell surface. We also found that Ssa I decreased the migratory ability of cells, enhanced cell adhesion to extracellular matrix proteins. Finally, a pulmonary metastasis assay demonstrated that alteration of glycosylation in this way significantly reduced the ability of tumor cells to distribute to the lungs of mice. Collectively, these findings suggested that alpha2,3-linked sialic acids may play an important role in metastasis potential of B16F10 cells.  相似文献   

17.
Zhang L  Chen W  Li X 《FEBS letters》2008,582(13):1821-1828
There is increasing evidence that epithelial-mesenchymal transition (EMT) plays a critical role in cancer metastasis. Butein is a polyphenolic compound, which has been found to exhibit anti-proliferation effects on cancer cells. Here, we report that in addition to its function as an anti-proliferation agent, butein can inhibit migration and invasion through the ERK1/2 and NF-kappaB signaling pathways in human bladder cancer cells, and this inhibitory effect may be associated with reversal of EMT. These results were further confirmed by RNAi-mediated suppression of NF-kappaB, which partly reverses EMT and inhibits cell invasive ability in vitro. These results suggest a novel function of butein as an invasion inhibitor in bladder cancer.  相似文献   

18.
BackgroundA large number of breast cancer patients perishes due to metastasis instead of primary tumor, but molecular mechanisms contributing towards cancer metastasis remain poorly understood. Therefore, prompting development of novel treatment is inevitable. A vast variety of plant derived natural substance possesses several therapeutically active constituents, e.g. alkaloids, flavonoids, tannins, resins, terpenoids etc. that exhibit various pharmacological properties e.g. anti-inflammatory, anti-microbial and anti-cancer properties. Sanguinarine (SAN) alkaloid found its place among such naturally occurring substances that exerts several pharmacological activities, including anti-cancer effects.PurposeUntil now, role of SAN not only against epithelial-mesenchymal transition (EMT) but also against metastasis progression in breast cancer remains indistinct. Thus, aim of the present study was to investigate effects of SAN on EMT process and cancer metastasis in animal model.MethodsMTT assay was performed to assess SAN effects on proliferation in breast cancer. Scratch assay was performed to evaluate effects of SAN on migration in breast cancer. Colony formation assay was performed to determine effects of SAN on colonization characteristics of breast cancer. Western blotting was performed to measure EMT regulating protein expression as well as major pathway protein expression induced against TGF-β treatment in breast cancer. Tail vein method of injecting breast cancer cells in bulb/c mice was conducted to study metastasis progression and thereafter assessing effects of SAN against metastasis in mice.ResultsIn vivo results: MTT assay performed, demonstrated dose dependent inhibition of cell proliferation in breast cancer. Scratch assay results showed, SAN played a major role as migration inhibitor in estrogen receptor positive (ER+) breast cancer. Colony forming assay results demonstrated that SAN constrains ability of breast cancer to develop into well-defined colonies. Western blotting results for EMT regulating protein expression, after TGF-β treatment showed, SAN inhibited cadherin switch in ER+ breast cancer. Moreover, expression of pathway proteins involved in EMT process after TGF-β treatment i.e. Smad, PI3K/Akt and MAP kinase were significantly masked against SAN treatment.In vivo resultsThe appearance of metastatic nodules in lung tissues of mice model, helps to study the effects of SAN against metastasis in bulb/c mice. The obtained results have confirmed that SAN impeded lung metastasis. The macroscopic examination has confirmed metastasis inhibitory role of SAN in breast cancer. The Hematoxylin and eosin (H&E) staining results further advocate anti-metastatic characteristics of SAN, presented by fewer metastatic nodule and lesions appearance in SAN treated mice compared to untreated metastasis mice.ConclusionIn summary, SAN displayed prominent anti-metastatic effects in animal model and anti-proliferation effects together with significant inhibitory potential on EMT regulating protein expression against TGF-β treatment in ER+ breast cancer. So, overall findings of our study highlighted the pre-clinical significance of SAN in animal model therefore, further studies in humans as a part of clinical trial will be needed to establish pharmacokinetics and other effects of SAN, so that it can be a potential candidate for future treatment of metastatic breast cancer (MBC).  相似文献   

19.
20.
High rates of de novo lipid synthesis have been discovered in certain kinds of tumours, including gallbladder cancer (GBC). Unlike several other tumours, GBC is highly insensitive to standard adjuvant therapy, which makes its treatment even more challenging. Although several potential targets and signalling pathways underlying GBC chemoresistance have been revealed, the precise mechanisms are still elusive. In this study, we found that α‐Mangostin, as a dietary xanthone, repressed the proliferation and clone formation ability, induced cell cycle arrest and the apoptosis, and suppressed de novo lipogenesis of gallbladder cancer cells. The underlying mechanisms might involve the activation of AMPK and, therefore, the suppression of SREBP1 nuclear translocation to blunt de novo lipogenesis. Furthermore, SREBP1 silencing by siRNA or α‐mangostin enhanced the sensitivity of gemcitabine in gallbladder cancer cells. In vivo studies also displayed that MA or gemcitabine administration to nude mice harbouring NOZ tumours can reduce tumour growth, and moreover, MA administration can significantly potentiate gemcitabine‐induced inhibition of tumour growth. Corroborating in vitro findings, tumours from mice treated with MA or gemcitabine alone showed decreased levels of proliferation with reduced Ki‐67 expression and elevated apoptosis confirmed by TUNEL staining, furthermore, the proliferation inhibition and apoptosis up‐regulation were obviously observed in MA combined with gemcitabine treatment group. Therefore, inhibiting de novo lipogenesis via targeting the AMPK/SREBP1 signalling by MA might provide insights into a potential strategy for sensitizing GBC cells to chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号