首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deregulated miRNAs participate in colorectal carcinogenesis. In this study, miR-218 was found to be downregulated in human colorectal cancer (CRC) by miRNA profile assay. miR-218 was silenced or downregulated in all five colon cancer cells (Caco2, HT29, SW620, HCT116 and LoVo) relative to normal colon tissues. miR-218 expression was significantly lower in 46 CRC tumor tissues compared with their adjacent normal tissues (P < 0.001). Potential target genes of miR-218 were predicted and BMI1 polycomb ring finger oncogene (BMI-1), a polycomb ring finger oncogene, was identified as one of the potential targets. Upregulation of BMI-1 was detected in CRC tumors compared with adjacent normal tissues (P < 0.001) and in all five colon cancer cell lines. Transfection of miR-218 in colon cancer cell lines (HCT116, HT29) significantly reduced luciferase activity of the wild-type construct of BMI-1 3′ untranslated region (3′UTR) (P < 0.001), whereas this effect was not seen in the construct with mutant BMI-1 3′UTR, indicating a direct and specific interaction of miR-218 with BMI-1. Ectopic expression of miR-218 in HCT116 and HT29 cells suppressed BMI-1 mRNA and protein expression. In addition, miR-218 suppressed protein expression of BMI-1 downstream targets of cyclin-dependent kinase 4, a cell cycle regulator, while upregulating protein expression of p53. We further revealed that miR-218 induced apoptosis (P < 0.01), inhibited cell proliferation (P < 0.05) and promoted cell cycle arrest in the G2 phase (P < 0.01). In conclusion, miR-218 plays a pivotal role in CRC development through inhibiting cell proliferation and cycle progression and promoting apoptosis by downregulating BMI-1.  相似文献   

2.
Bao  Juntao  Zhang  Shufeng  Meng  Qinglei  Qin  Tao 《Neurochemical research》2020,45(4):825-836
Neurochemical Research - Neuroblastoma (NB) is a common intracranial solid tumor with high mortality. Small nucleolar RNA host gene 16 (SNHG16), one of the long noncoding RNAs (lncRNAs), has been...  相似文献   

3.
4.
5.

Background

Several members of the zinc finger protein family have been recently shown to have a role in cancer initiation and progression. Zinc finger protein 367 (ZNF367) is a member of the zinc finger protein family and is expressed in embryonic or fetal erythroid tissue but is absent in normal adult tissue.

Methodology/Principal Findings

We show that ZNF367 is overexpressed in adrenocortical carcinoma, malignant pheochromocytoma/paraganglioma and thyroid cancer as compared to normal tissue and benign tumors. Using both functional knockdown and ectopic overexpression in multiple cell lines, we show that ZNF367 inhibits cellular proliferation, invasion, migration, and adhesion to extracellular proteins in vitro and in vivo. Integrated gene and microRNA expression analyses showed an inverse correlation between ZNF367 and miR-195 expression. Luciferase assays demonstrated that miR-195 directly regulates ZNF367 expression and that miR-195 regulates cellular invasion. Moreover, integrin alpha 3 (ITGA3) expression was regulated by ZNF367.

Conclusions/Significance

Our findings taken together suggest that ZNF367 regulates cancer progression.  相似文献   

6.
Morbillivirus infections are characterized by severe leukopenia and immune suppression that develop even before the onset of clinical signs. To characterize in more detail the fate of the immune cells during the critical first week, we evaluated the overall viability, level of apoptosis, cell cycle status, and extent of infection in different immune tissues of ferrets inoculated with a lethal canine distemper virus (CDV) strain. Initial experiments with MDCK cells, a canine epithelial cell line, revealed that CDV infection resulted in only a marginal increase in apoptosis at high infection levels and that infected cells were more resistant to chemically induced apoptosis. In ferrets, levels of viability and early and late apoptosis remained stable in thymus and lymph node, where more than 80% of cells were infected, whereas a gradual albeit small increase in apoptosis was observed in peripheral blood mononuclear cells and spleen. Furthermore, the progression of spontaneous apoptosis in infected cells was inhibited, while the proportion of apoptotic noninfected “bystander” cells increased. The distribution of cells in the different stages of the cell cycle in the bone marrow was not affected, but dividing cells in the thymus decreased by 50%, and a 10-fold increase in cell division was noted in the spleen. It is unlikely that the extent of infection-induced cell death and cell cycle alterations alone can account for the dramatic leukopenia observed in this model. The investigation of additional mechanisms is therefore warranted.Morbilliviruses are highly contagious pathogens that cause systemic disease. In addition to respiratory and gastrointestinal signs, the disease is characterized by a rapid onset of severe leukopenia and loss of lymphocyte proliferation ability. The resulting immunosuppression increases the host''s susceptibility to opportunistic infections, which are a main cause of morbillivirus-associated deaths (4, 15, 29). In the case of measles virus (MeV), which infects only humans and certain nonhuman primates, fatal disease outcome is rare (14), while some animal morbilliviruses, especially those infecting carnivores, can approach 100% mortality (3). The characterization of the events leading to immunosuppression has been the subject of intense study. The signaling lymphocyte activation molecule (SLAM, CD150), the only general morbillivirus receptor identified so far, is present on lymphocyte subsets, which explains the lymphotropism observed (36, 40). However, the effects of the infection on infected as well as noninfected immune cells during the critical first week after infection, before the development of clinical signs, remain largely unknown.Virus-induced apoptosis of immune cells has been proposed as one of the causes of the severe leukopenia observed (25). Apoptosis is a physiological process of cell death that is essential for normal tissue turnover during embryogenesis, immune system development, and tissue homeostasis. It also constitutes a basic antiviral mechanism that limits replication and spread by driving suicide of infected cells (1, 6). MeV infection results in apoptosis in Vero cells and human monocytic or promonocytic cell lines (10), as well as in primary cultured monocytes and dendritic cells (12). This capacity to induce apoptosis in infected cells and the resulting presentation of tumor antigens is increasingly exploited in oncolytic gene therapy approaches (13, 21).In addition, bystander apoptosis of noninfected CD3+ cells has been observed after in vitro infection of human peripheral blood mononuclear cells (PBMCs) (12, 41). These observations have been supported by direct analyses of PBMCs from MeV patients, where high levels of proapoptotic noninfected cells were found (25, 26). In the cotton rat model, exposure to MeV glycoproteins initially resulted in cell cycle arrest in splenocytes (23), indicating that contact with viral proteins may be the initial trigger of bystander apoptosis. Increased apoptosis has also been observed in lymphatic tissue sections from cattle experimentally infected with rinderpest virus and in brain sections of dogs with nervous distemper (5, 33). However, the infection status of these cells remains to be determined.Most viruses have developed mechanisms to prevent or at least control apoptosis (6), since apoptotic cells are rapidly phagocytosed, which leads to the presentation of viral antigens, thereby supporting the development of an efficient immune response (1, 11, 27). The MeV V protein exhibits antiapoptotic ability by inhibiting p73, a member of the p53 family that is strongly involved in the regulation of apoptosis (7), and it has recently been reported that the C protein interferes with apoptosis induction by blocking the protein kinase regulated by RNA (PKR) (37). It is thus likely that the disease course observed is the result of pro- and antiapoptotic events occurring simultaneously.To characterize the contribution of apoptosis to morbillivirus immunopathogenesis in more detail, we studied an enhanced green fluorescent protein (eGFP)-expressing wild-type canine distemper virus (CDV) strain in ferrets. This strain reliably causes severe leukopenia, inhibition of lymphocyte proliferation, and loss of delayed-type hypersensitivity responses (39), thus reproducing key elements of MeV immunosuppression. We initially examined the effect of CDV infection in Madin-Darby canine kidney (MDCK) cells, a canine epithelial cell line, to assess the extent of apoptosis in a natural target cell type in vitro. This was followed by a time course analysis of immune tissues covering the first week after infection. Specifically, infection rates, cell viability, cell cycle distribution, and apoptosis were assessed in bone marrow, thymus, spleen, mesenteric lymph node, and PBMCs of infected ferrets.  相似文献   

7.
8.
Lung cancer (LC) is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP) has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR) mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT) were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.  相似文献   

9.
miR-145通过靶向吞噬和细胞活力蛋白1抑制乳腺癌细胞侵袭   总被引:1,自引:0,他引:1  
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

10.
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

11.
Prostate cancer (PCa) is one of the leading causes of deaths in America. The major cause of mortality can be attributed to metastasis. Cancer metastasis involves sequential and interrelated events. miRNAs and epithelial-mesenchymal transition (EMT) are implicated in this process. miR-195 is downregulated in many human cancers. However, the roles of miR-195 in PCa metastasis and EMT remain unclear. In this study, data from Memorial Sloan Kettering Cancer Center (MSKCC) prostate cancer database were re-analysed to detect miR-195 expression and its roles in PCa. miR-195 was then overexpressed in castration-resistant PCa cell lines, DU-145 and PC-3. The role of miR-195 in migration and invasion in vitro was also investigated, and common markers in EMT were evaluated through Western blot analysis. A luciferase reporter assay was conducted to confirm the target gene of miR-195; were validated in PCa cells. In MSKCC data re-analyses, miR-195 was poorly expressed in metastatic PCa; miR-195 could be used to diagnose metastatic PCa by measuring the corresponding expression. Area under the receiver operating characteristic curve (AUC-ROC) was 0.705 (P = 0.017). Low miR-195 expression was characterised with a shorter relapse-free survival (RFS) time. miR-195 overexpression suppressed cell migration, invasion and EMT. Fibroblast growth factor 2 (FGF2) was confirmed as a direct target of miR-195. FGF2 knockdown also suppressed migration, invasion and EMT; by contrast, increased FGF2 partially reversed the suppressive effect of miR-195. And data from ONCOMINE prostate cancer database showed that PCa patients with high FGF2 expression showed shorter RFS time (P = 0.046). Overall, this study demonstrated that miR-195 suppressed PCa cell metastasis by downregulating FGF2. miR-195 restoration may be considered as a new therapeutic method to treat metastatic PCa.  相似文献   

12.
该文探讨了羽扇豆醇(Lupeol)对人结肠癌HCT116和SW620细胞增殖的影响及相关作用机制。使用不同浓度的Lupeol处理HCT116和SW620细胞后,用MTT法检测细胞活性,CCK8法检测细胞增殖能力,平板克隆实验检测细胞克隆形成能力,流式细胞术检测细胞周期和细胞凋亡,(quantitative real-time PCR,qPCR)和Western blot检测相应mRNA和蛋白表达水平,免疫荧光检测β-Catenin蛋白细胞内分布情况。通过构建shRNA敲低两种结肠癌细胞中RhoA,进一步研究Lupeol影响细胞增殖的分子机制。结果显示,Lupeol处理后,HCT116和SW620细胞增殖能力明显下降,克隆形成能力受到抑制,细胞周期阻滞于G0/G1期,细胞内RhoA、ROCK1、β-Catenin、Cyclin D1 mRNA和蛋白表达水平均显著下降,β-Catenin蛋白胞质和胞膜上分布减少。敲低RhoA后抑制了细胞增殖,同时使得RhoA-ROCK1-β-Catenin信号通路蛋白受到抑制,β-Catenin蛋白胞质和胞膜上分布减少。综上所述,Lupeol可通过抑制RhoA-ROCK1信号通路,抑制β-Catenin蛋白表达,进而抑制HCT116和SW620细胞增殖,Lupeol有望成为临床结肠癌治疗的新药物。  相似文献   

13.
14.
Background: Bladder cancer (BCa) is a prevalent urologic malignancy that shows a poor prognosis. Abnormal metabolism and its key genes play a critical role in BCa progression. In this study, the role played by PhosphoGlycerol Dehydrogenase (PHGDH), an important molecule of serine metabolism, was investigated with regard to the regulation of ferroptosis in BCa.Methods: The BCa tissues of 90 patients were analyzed by RNA-sequencing for differential pathways and genes. Western blot, qPCR, and IHC were used to determine PHGDH expression in the cell lines (in vitro) and patient tissues (in vivo). R software was used to analyze PHGDH expression, prognosis, and PHGDH+SLC7A11 score. The biological functions of PHGDH were examined through organoids, and in vitro and in vivo experiments. C11 probes, electron microscopy, and ferroptosis inhibitors/ inducers were used to detect cellular ferroptosis levels. Protein profiling, co-IP, and RIP assays were used to screen proteins that might bind to PHGDH. PHGDH-targeted inhibitor NCT-502 was used to evaluate its effect on BCa cells.Results: PHGDH was highly expressed in patients with BCa. Knock-down of PHGDH promoted ferroptosis, while the decreased proliferation of BCa cells. Additionally, PHGDH knock-down downregulated the expression of SLC7A11. Co-IP and mass spectrometry experiments indicate that PHGDH binds to PCBP2, an RNA-binding protein, and inhibits its ubiquitination degradation. PCBP2 in turn stabilizes SLC7A11 mRNA and increases its expression. NCT-502, a PHGDH inhibitor, promotes ferroptosis and inhibits tumor progression in BCa. The PHGDH+ SLC7A11 score was significantly correlated with patient prognosis.Conclusions: To conclude, the PHGDH, via interaction with PCBP2, upregulates SLC7A11 expression. This inhibits ferroptosis and promotes the malignant progression of BCA. The results of this study indicated that NCT-502 could serve as a therapeutic strategy for BCa.  相似文献   

15.
The QSOX1 protein (Quiescin Sulfhydryl oxidase 1) catalyzes the formation of disulfide bonds and is involved in the folding and stability of proteins. More recently, QSOX1 has been associated with tumorigenesis and protection against cellular stress. It has been demonstrated in our laboratory that QSOX1 reduces proliferation, migration and invasion of breast cancer cells in vitro and reduces tumor growth in vivo. In addition, QSOX1 expression has been shown to be induced by oxidative or ER stress and to prevent cell death linked to these stressors. Given the function of QSOX1 in these two processes, which have been previously linked to autophagy, we wondered whether QSOX1 might be regulated by autophagy inducers and play a role in this catabolic process. To answer this question, we used in vitro models of breast cancer cells in which QSOX1 was overexpressed (MCF-7) or extinguished (MDA-MB-231). We first showed that QSOX1 expression is induced following amino acid starvation and maintains cellular homeostasis. Our results also indicated that QSOX1 inhibits autophagy through the inhibition of autophagosome/lysosome fusion. Moreover, we demonstrated that inhibitors of autophagy mimic the effect of QSOX1 on cell invasion, suggesting that its role in this process is linked to the autophagy pathway. Previously published data demonstrated that extinction of QSOX1 promotes tumor growth in NOG mice. In this study, we further demonstrated that QSOX1 null tumors present lower levels of the p62 protein. Altogether, our results demonstrate for the first time a role of QSOX1 in autophagy in breast cancer cells and tumors.  相似文献   

16.
HER2 is a transmembrane receptor with intrinsic tyrosine kinase activity that is overexpressed in almost 25% of human breast cancers. Here, we report that the neddylation of HER2 is a new post-translational modification that controls its expression and oncogenic activity in human breast cancer. Two critical members in the neddylation pathway, NEDD8 and NEDD8-activating enzyme E1 subunit 1 (NAE1), are detected in human breast specimens. Overexpressed NEDD8 and NAE1 are positively correlated with HER2 expression in human breast cancer. Subsequent structure and function experiments show that HER2 directly interacts with NEDD8 and NAE1, whereas HER2 protein expression is decreased by neddylation depletion. Mechanistically, neddylation inhibition promotes the degradation of HER2 protein by improving its ubiquitination. HER2 overexpression abrogates neddylation depletion-triggered cell growth suppression. The inhibition of neddylation synergized with trastuzumab significantly suppresses growth of HER2 positive breast cancer. Collectively, this study demonstrates a previously undiscovered role of NEDD8-dependent HER2 neddylation promotes tumor growth in breast cancer.  相似文献   

17.
18.
Sparstolonin B (SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. Angiogenesis, the process of new capillary formation from existing blood vessels, is dysregulated in many pathological disorders, including diabetic retinopathy, tumor growth, and atherosclerosis. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. Microarray experiments with human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) demonstrated differential expression of several hundred genes in response to SsnB exposure (916 and 356 genes, respectively, with fold change ≥2, p<0.05, unpaired t-test). Microarray data from both cell types showed significant overlap, including genes associated with cell proliferation and cell cycle. Flow cytometric cell cycle analysis of HUVECs treated with SsnB showed an increase of cells in the G1 phase and a decrease of cells in the S phase. Cyclin E2 (CCNE2) and Cell division cycle 6 (CDC6) are regulatory proteins that control cell cycle progression through the G1/S checkpoint. Both CCNE2 and CDC6 were downregulated in the microarray data. Real Time quantitative PCR confirmed that gene expression of CCNE2 and CDC6 in HUVECs was downregulated after SsnB exposure, to 64% and 35% of controls, respectively. The data suggest that SsnB may exert its anti-angiogenic properties in part by downregulating CCNE2 and CDC6, halting progression through the G1/S checkpoint. In the chick chorioallantoic membrane (CAM) assay, SsnB caused significant reduction in capillary length and branching number relative to the vehicle control group. Overall, SsnB caused a significant reduction in angiogenesis (ANOVA, p<0.05), demonstrating its ex vivo efficacy.  相似文献   

19.
目的:体外水平探讨利用化学修饰的小干扰RNA(small interfering RNA,siRNA)敲减VEGFR-1基因治疗乳腺癌的可行性和特异性.方法:采用阳离子脂质Lipofectamine2000TM作为转染试剂将同时针对人和大鼠VEGFR-1基因的小干扰RNA转染人乳腺癌细胞系MCF-7和大鼠乳腺癌细胞系SHZ-88,敲减VEGFR-1基因的表达;采用四甲基偶氮唑蓝(MTT)法,半定量RT-PCR,蛋白印迹试验等检测VEGFR-1mRNA和蛋白表达及细胞增殖变化.结果:靶向VEGFR-1基因的siRNA转染细胞后,两种细胞增殖均被抑制,同浓度两细胞株指标无显著差异,VEGFR-1mRNA和蛋白的表达均明显降低.各对照组指标则无显著变化.结论:化学修饰的siRNA介导的RNAi能成功敲减VEGFR-1基因的表达、抑制乳腺癌细胞增殖.  相似文献   

20.
靶向Survivin的反义寡核苷酸对肿瘤细胞增殖的抑制作用   总被引:8,自引:0,他引:8  
 Survivin是新近克隆的一种凋亡抑制蛋白 (IAP)家族成员 ,在几乎所有肿瘤组织中特异性表达 ,而在正常成年终末分化组织中低表达甚至不表达 .采用四唑盐 (MTT)比色实验法比较 2 0条抗人survivin反义寡核苷酸对HeLa细胞增殖的抑制效果 ,并从中筛选效果显著的反义寡核苷酸 ,在体外水平进一步验证其抑制survivin表达的能力 .在用 4 0 0nmol L反义寡核苷酸转染HeLa细胞 4 8h后 ,有 4条反义寡核苷酸对细胞增殖的抑制率超过 4 0 %,其中 4 5号反义寡核苷酸的抑制率可达5 9%,而阳性对照序列ISIS2 372 2的抑制率仅达 30 %.Northern和Western印迹分析证明 :4 5号反义寡核苷酸可明显降低细胞中survivin基因的mRNA含量和蛋白水平 .4 5号反义寡核苷酸还可在较低浓度 (2 0 0nmol L)显著增强HeLa细胞对化疗药三尖杉酯碱的敏感性 .因此 ,4 5号反义寡核苷酸有望应用于survivin高表达肿瘤的辅助治疗之中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号