首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9 -/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9 -/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR.  相似文献   

2.
Respiratory syncytial virus (RSV) is a major cause of respiratory illness in young children, leading to significant morbidity and mortality worldwide. Despite its medical importance, no vaccine or effective therapeutic interventions are currently available. Therefore, there is a pressing need to identify novel antiviral drugs to combat RSV infections. Hsp90, a cellular protein-folding factor, has been shown to play an important role in the replication of numerous viruses. We here demonstrate that RSV requires Hsp90 for replication. Mechanistic studies reveal that inhibition of Hsp90 during RSV infection leads to the degradation of a viral protein similar in size to the RSV L protein, the viral RNA-dependent RNA polymerase, implicating it as an Hsp90 client protein. Accordingly, Hsp90 inhibitors exhibit antiviral activity against laboratory and clinical isolates of RSV in both immortalized as well as primary differentiated airway epithelial cells. Interestingly, we find a high barrier to the emergence of drug resistance to Hsp90 inhibitors, as extensive growth of RSV under conditions of Hsp90 inhibition did not yield mutants with reduced sensitivity to these drugs. Our results suggest that Hsp90 inhibitors may present attractive antiviral therapeutics for treatment of RSV infections and highlight the potential of chaperone inhibitors as antivirals exhibiting high barriers to development of drug resistance.  相似文献   

3.
A large epizootic of an acute respiratory disease of cattle occurred in Japan during the months from October 1968 to May 1969. A virus was recovered in primary cultures of calf kidney and testicle cells from nasal swabs of affected cattle. Neutralization tests revealed the virus to be closely related to the Long strain of human respiratory syncytial virus. The virus induced cytopathic changes including the formation of syncytia and acidophilic-cytoplasmic inclusions in calf kidney and testicle cell cultures. A calf inoculated with the virus by the respiratory route developed an illness resembling the natural disease. Most cattle clinically diagnosed as having the disease showed significant rises of neutralizing antibody titer for the isolated virus, whereas none or only small fractions of those animals showed serological evidence for recent infection with bovine ephemeral fever virus, infectious bovine rhinotracheitis virus, Ibaraki virus, bovine diarrhea virus, bovine adenovirus Type 7 and parainfluenza virus Type 3. Neutralization tests on paired sera revealed a wide dissemination of the isolated virus among cattle in many areas of the country during the epizootic. All these findings leave no doubt that the epizootic was caused by bovine respiratory syncytial virus. This is the first study that ever shows the presence of infection of cattle with this virus in Japan.  相似文献   

4.
Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.  相似文献   

5.
Respiratory syncytial virus (RSV) is the most common cause of infant hospitalizations and severe RSV infections are a significant risk factor for childhood asthma. The pathogenic mechanisms responsible for RSV induced immunopathophysiology remain elusive. Using an age-appropriate mouse model of RSV, we show that IL-33 plays a critical role in the immunopathogenesis of severe RSV, which is associated with higher group 2 innate lymphoid cells (ILC2s) specifically in neonates. Infection with RSV induced rapid IL-33 expression and an increase in ILC2 numbers in the lungs of neonatal mice; this was not observed in adult mice. Blocking IL-33 with antibodies or using an IL-33 receptor knockout mouse during infection was sufficient to inhibit RSV immunopathogenesis (i.e., airway hyperresponsiveness, Th2 inflammation, eosinophilia, and mucus hyperproduction); whereas administration of IL-33 to adult mice during RSV infection was sufficient to induce RSV disease. Additionally, elevated IL-33 and IL-13 were observed in nasal aspirates from infants hospitalized with RSV; these cytokines declined during convalescence. In summary, IL-33 is necessary, either directly or indirectly, to induce ILC2s and the Th2 biased immunopathophysiology observed following neonatal RSV infection. This study provides a mechanism involving IL-33 and ILC2s in RSV mediated human asthma.  相似文献   

6.
During an epidemic of respiratory syncytial (R.S.) virus in Newcastle upon Tyne 13 children developed R.S. virus infections while in hospital with other conditions. R.S. virus infection was also noted in four members of the staff. In two of the hospital wards outbreaks developed. All children infected with R.S. virus developed symptoms. The symptoms varied with age; two children aged 2 months or less developed colds, as did five children over 1 year of age. One child of 15 months with Werdnig-Hoffman disease, though suffering from a cold, later developed pulmonary collapse. All five children aged 3 to 8 months developed bronchiolitis. The effectiveness of special nursing in cubicles was probably diminished because adults with mild colds were excreting virus. The dangers of R.S. virus infection to other children in the ward, especially those with congenital heart disease, is emphasized.  相似文献   

7.
呼吸道合胞病毒(RSV)感染是一个影响婴幼儿健康的全球性的问题,目前尚未有令人满意的治疗药物,免疫预防就显得尤为重要。近年研究表明,免疫预防在疫苗、单克隆抗体以及免疫球蛋白等领域均取得较大进展。  相似文献   

8.
呼吸道合胞病毒疫苗研究进展   总被引:5,自引:0,他引:5  
呼吸道合胞病毒(RSV)是引起婴幼儿支气管炎和肺炎的主要原因,并可致免疫缺陷病人显著发病和死亡,RSV疫苗已被WHO列为全球最优先发展的疫苗之一。经过几十年的研究,虽然取得了显著进展,但尚未有RSV疫苗上市。目前RSV疫苗的研究主要集中于亚单位疫苗、减毒活疫苗和DNA疫苗等,其中亚单位疫苗和减毒活疫苗被认为最有前途,已分别进行了的临床试验。  相似文献   

9.
10.
Morphogenesis and Ultrastructure of Respiratory Syncytial Virus   总被引:8,自引:3,他引:5       下载免费PDF全文
Respiratory syncytial (RS) virus was grown in Vero cells and fixed for electron microscopy at various stages of maturation. Both filamentous and round or kidney-shaped particles, either with (complete) or without (incomplete) internal structure, were observed. All four morphological forms were identical with respect to their reactivity with ferritin-labeled antibody to RS virus. Freezeetching revealed a structural feature apparently unique for RS virus, namely helical striations around the core on the internal aspect of the envelope. This specific configuration was already detectable during the early stages of viral differentiation of the host cell membrane. Concentration of free virus by zonal ultracentrifugation of culture fluids onto sucrose cushions yielded predominantly filamentous forms up to 10 mum in length.  相似文献   

11.
呼吸道合胞病毒(respiratory syncytial virus RSV)是引起婴幼儿毛细支气管炎最重要的病原体。其主要临床表现为喘息。部分患儿可出现反复喘息发作而发展为哮喘。对RSV感染尚无特效治疗药物,仍然以支持对症治疗为主,目前的研究热点是中西医结合治疗,反义基因治疗,高渗盐水雾化吸入治疗等。  相似文献   

12.
Temperature-sensitive Mutants of Respiratory Syncytial Virus   总被引:12,自引:3,他引:9       下载免费PDF全文
Four conditional-lethal temperature-sensitive mutants of RS virus were detected among the progeny of 454 plaques derived from virus grown in the presence of 10(-4)m 5-fluorouridine. These mutants were stable (reversion frequency, 10(-5.0) or less and failed to produce plaques at 38 or 39 C. Plaquing efficiency was depressed 100-fold or more at 37 C. Variable suppression of growth at the restrictive temperature of 39 C was observed, ranging from 16-fold to complete suppression. The temperature-sensitive defect of three of the mutants appeared to affect functions which were expressed late in the replicative cycle. One of the mutants produced atypical nonsyncytial plaques.  相似文献   

13.
14.
呼吸道合胞病毒(RSV)是引起严重下呼吸道感染的重要病原体,尽管经历了半个多世纪的努力,至今仍未有安全有效的RSV疫苗上市。近年来在RSV F蛋白结构生物学方面的研究进展为新一代RSV疫苗的开发提供了新方向,同时更多的采用不同技术、或针对不同人群的RSV侯选疫苗也在迅速发展,尤其是针对婴幼儿及老年人的RSV侯选苗已有60多种在研究中,大部分已处于临床前研究阶段,18种侯选苗已进入临床试验。我们简要介绍RSV疫苗的最新研究进展。  相似文献   

15.
16.
In an outbreak of respiratory syncytial (R.S.) virus infection in a maternity hospital the respiratory illness was of a mild nature and the virus was not found in infants without respiratory symptoms. This confirms the suggestion that R.S. virus can infect infants at a very early age. Rapid diagnosis was achieved by applying the direct fluorescent antibody technique to cells in nasal secretions. This proved to be more sensitive than culture techniques where there was delay between the onset of respiratory symptoms and submission of specimens to the laboratory.  相似文献   

17.
Pneumoviruses have been identified as causative agents in several respiratory disease outbreaks in habituated wild great apes. Based on phylogenetic evidence, transmission from humans is likely. However, the pathogens have never been detected in the local human population prior to or at the same time as an outbreak. Here, we report the first simultaneous detection of a human respiratory syncytial virus (HRSV) infection in western lowland gorillas (Gorilla gorilla gorilla) and in the local human population at a field program in the Central African Republic. A total of 15 gorilla and 15 human fecal samples and 80 human throat swabs were tested for HRSV, human metapneumovirus, and other respiratory viruses. We were able to obtain identical sequences for HRSV A from four gorillas and four humans. In contrast, we did not detect HRSV or any other classic human respiratory virus in gorilla fecal samples in two other outbreaks in the same field program. Enterovirus sequences were detected but the implication of these viruses in the etiology of these outbreaks remains speculative. Our findings of HRSV in wild but human-habituated gorillas underline, once again, the risk of interspecies transmission from humans to endangered great apes.  相似文献   

18.
紫球藻胞外多糖抗呼吸道合胞病毒(RSV)活性研究   总被引:1,自引:0,他引:1  
采用体外细胞培养的方法,在Hela细胞系上检测了来自紫球藻的胞外多糖及其组分的抗呼吸道病毒(RSV)活性。发现紫球藻胞外多糖对呼吸道合胞病毒具有强烈的抑制活性,同时对宿主细胞的抑制作用很小。分离组分中的强带电性组分ESPSⅥ活性最高,其TI值达3125,为阳性对照药病毒唑的40余倍。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号