首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Calcium-dependent protein kinases (CDPKs) are Ca2+-binding proteins known to play crucial roles in Ca2+ signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.  相似文献   

6.
7.
8.
9.
10.
11.
Lactic acid bacteria (LAB) represent a functional group of bacteria that are fundamental in human nutrition because of their prominent role in fermented food production and their presence as commensals in the gut. LAB co-evolution and niche-adaptation have been analyzed in several phylogenomic studies due to the availability of complete genome sequences. The aim of this study was to provide novel insights into LAB evolution through the comparative analysis of the metabolic pathways related to carbohydrate metabolism. The analysis was based on 42 LAB genome sequences of representative strains belonging to Enterococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae. A reference phylogenetic tree was inferred from concatenation of 42 ribosomal proteins; then 42 genes belonging to the Embden–Meyerhof–Parnas (or glycolysis; EMPP) and pentose phosphate (PPP) pathways were analyzed in terms of their distribution and organization in the genomes. Phylogenetic analyses confirmed the paraphyly of the Lactobacillaceae family, while the distribution and organization of the EMPP and PPP genes revealed the occurrence of lineage-specific trends of gene loss/gain within the two metabolic pathways examined. In addition, the investigation of the two pathways as structures resulting from different evolutionary processes provided new information concerning the genetic bases of heterofermentative/homofermentative metabolism.  相似文献   

12.
Pathogenesis-related proteins (PRs) are the antimicrobial proteins which are commonly used as signatures of defense signaling pathways and systemic acquired resistance. However, in Brassica juncea most of the PR proteins have not been fully characterized and remains largely enigmatic. In this study, full-length cDNA sequences of SA (PR1, PR2, PR5) and JA (PR3, PR12 and PR13) marker genes were isolated from B. juncea and were named as BjPR proteins. BjPR proteins showed maximum identity with known PR proteins of Brassica species. Further, expression profiling of BjPR genes were investigated after hormonal, biotic and abiotic stresses. Pre-treatment with SA and JA stimulators downregulates each other signature genes suggesting an antagonistic relationship between SA and JA in B. juncea. After abscisic acid (ABA) treatment, SA signatures were downregulated while as JA signature genes were upregulated. During Erysiphe cruciferarum infection, SA- and JA-dependent BjPR genes showed distinct expression pattern both locally and systemically, thus suggesting the activation of SA- and JA-dependent signaling pathways. Further, expression of SA marker genes decreases while as JA-responsive genes increases during drought stress. Interestingly, both SA and JA signature genes were induced after salt stress. We also found that BjPR genes displayed ABA-independent gene expression pattern during abiotic stresses thus providing the evidence of SA/JA cross talk. Further, in silico analysis of the upstream regions (1.5 kb) of both SA and JA marker genes showed important cis-regulatory elements related to biotic, abiotic and hormonal stresses.  相似文献   

13.
14.
15.
16.
17.
F. Liu  J. Li  Y. Liu 《Biologia Plantarum》2016,60(2):311-319
Molecular hydrogen (H2) could be a novel signal in phytohormone signaling pathways in response to biotic and abiotic stresses. Here, we employed two wild rice species (Oryza rufipogon Griff. and O. minuta J. Presl) to test this hypothesis using hydrogen-rich water (HW). The expression differences of phytohormone and hydrogenase genes between conventional rice (Oryza sativa L,) and wild rice were determined by real-time quantitative polymerase chain reaction, and the effects of HW on gene expression of wild rice were detected during three growth stages. Expression of hydrogenase genes, synthesis genes, and receptor genes of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) signalling pathways was higher in six wild rice types than in conventional rice. Hydrogen-rich water up-regulated expression of two hydrogenase genes, SA, JA, and ET receptor genes and synthesis genes in the seedling stage of wild rice. But this positive regulation by HW was less significant in the vegetative and reproductive stages.  相似文献   

18.
Fusarium head blight (FHB) is a major cereal crop disease, caused most frequently by the fungus Fusarium graminearum. We have previously demonstrated that F. graminearum can utilize SA as sole source of carbon to grow. In this current study, we further characterized selected four fungal SA-responsive genes that are predicted to encode salicylic acid (SA)-degrading enzymes and we used a gene replacement approach to characterize them further. These included two genes predicted to encode a salicylate 1-monooxygenase, FGSG_03657 and FGSG_09063, a catechol 1, 2-dioxygenase gene, FGSG_03667, and a 2, 3-dihydroxybenzoic acid decarboxylase gene, FGSG_09061. For each gene, three independent gene replacement strains were assayed for their ability to degrade salicylic acid in liquid culture. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were shown to be essential for SA degradation, while a loss of 2, 3-dihydroxybenzoic acid decarboxylase FGSG_09061 caused only a partial reduction of SA degradation and a loss of salicylate 1-monooxygenase FGSG_09063 had no effect when compared to wild type culture. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were identified as the first two key enzyme steps of SA degradation via catechol in the β-ketoadipate pathway. Expression profiles for all four genes were also determined in liquid culture and in planta. Salicylate 1-monooxygenase FGSG_03657 and catechol 1, 2-dioxygenase FGSG_03667 were co-expressed and their expression was substrate dependent in liquid culture; however their expression was uncoupled in planta. Disruption of the gene for catechol 1, 2-dioxygenase FGSG_03667 was shown to have no effect on fungal virulence on wheat. Our results with 2, 3-dihydroxybenzoic acid decarboxylase FGSG_09061 raise the possibility of an alternate non-oxidative decarboxylation pathway for the conversion of SA to catechol via 2, 3-dihydrozybenzoic acid and for a connection between the oxidative and the non-oxidative decarboxylation pathways for SA conversion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号