首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wet-indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.  相似文献   

2.
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen‐based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species‐specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species‐specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species‐specific primers to provide the most comprehensive signal from the environment.  相似文献   

3.
Reliable information on past and present vegetation is important to project future changes, especially for rapidly transitioning areas such as the boreal treeline. To study past vegetation, pollen analysis is common, while current vegetation is usually assessed by field surveys. Application of detailed sedimentary DNA (sedDNA) records has the potential to enhance our understanding of vegetation changes, but studies systematically investigating the power of this proxy are rare to date. This study compares sedDNA metabarcoding and pollen records from surface sediments of 31 lakes along a north–south gradient of increasing forest cover in northern Siberia (Taymyr peninsula) with data from field surveys in the surroundings of the lakes. sedDNA metabarcoding recorded 114 plant taxa, about half of them to species level, while pollen analyses identified 43 taxa, both exceeding the 31 taxa found by vegetation field surveys. Increasing Larix percentages from north to south were consistently recorded by all three methods and principal component analyses based on percentage data of vegetation surveys and DNA sequences separated tundra from forested sites. Comparisons of the ordinations using procrustes and protest analyses show a significant fit among all compared pairs of records. Despite similarities of sedDNA and pollen records, certain idiosyncrasies, such as high percentages of Alnus and Betula in all pollen and high percentages of Salix in all sedDNA spectra, are observable. Our results from the tundra to single‐tree tundra transition zone show that sedDNA analyses perform better than pollen in recording site‐specific richness (i.e., presence/absence of taxa in the vicinity of the lake) and perform as well as pollen in tracing vegetation composition.  相似文献   

4.
Two sites within the boreal forest of interior Alaska shed light on the climate and vegetation of terminal marine isotope stage (MIS) 6 (ca. 140–130 kyr ago) and MIS 5e (125–116 kyr ago). The Birch Creek and Koyukuk localities are river-cut exposures with sediments dating from the penultimate glaciation (at least) to the present. Plant macrofossils, pollen, and beetles were analyzed at these sites. Terminal MIS 6-aged samples indicate a cooler than modern climate and the presence of shrub tundra. During MIS 5e, boreal forest grew at the sites and temperatures were similar to modern times. However, the forest may also have been more mesic than today, as indicated by relatively abundant ferns. Winters may have been warmer than today, as suggested by beetle-based climatic reconstructions as well as the presence of two extralimital taxa that today live in regions where winter temperatures are up to 15 °C warmer than at the site localities.  相似文献   

5.
Study of plant microfossils and additional macrofossils collected from sediments in the vicinity of Sucker Creek along the Oregon-Idaho boundary has provided additional data on the composition of this fossil flora. A total of seven taxa new to the flora have been recognized. These include colonies of Botryococcus; pollen of Podocarpus, Pachysandra, and the Onagraceae; and leaves of Cephalotaxus californica and Vaccinium sophoroides. The occurrence of Podocarpus in this mid-Miocene flora is particularly significant in view of the limited number of records of this genus in the Tertiary of North America. In addition to these new records, the presence of three additional taxa—Castanea, Nyssa, and Ilex—previously recognized on the basis of leaf remains, is further substantiated by the occurrence of fossil pollen in the sediments.  相似文献   

6.
The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times.  相似文献   

7.
To estimate whether or not a plant taxon found in the fossil record was locally present may be difficult if only pollen is analyzed. Plant macrofossils, in contrast, provide a clear indication of a taxon’s local presence, although in some lake sediments or peats, macrofossils may be rare or degraded. For conifers, the stomata found on pollen slides are derived from needles and thus provide a valuable proxy for local presence and they can be identified to genus level. From previously published studies, a transect across the Alps based on 13 sites is presented. For basal samples in sandy silt above the till with high pollen values of Pinus, for example, we may distinguish pine pollen from distant sources (samples with no stomata), from reworked pollen (samples with stomata present). The first apparent local presence of most conifer genera based on stomata often but not always occurs together with the phase of rapid pollen increase (rational limit). An exception is Larix, with its annual deposition of needles and heavy poorly dispersed pollen, for it often shows the first stomata earlier, at the empirical pollen limit. The decline and potential local extinction of a conifer can sometimes be shown in the stomata record. The decline may have been caused by climatic change, competition, or human impact. In situations where conifers form the timberline, the stomata record may indicate timberline fluctuations. In the discussion of immigration or migration of taxa we advocate the use of the cautious term “apparent local presence” to include some uncertainties. Absence of a taxon is impossible to prove.  相似文献   

8.
BACKGROUND AND AIMS: The plants that have remained in the contaminated areas around Chernobyl since 1986 encapsulate the effects of radiation. Such plants are chronically exposed to radionuclides that they have accumulated internally as well as to alpha-, beta- and gamma-emitting radionuclides from external sources and from the soil. This radiation leads to genetic damage that can be countered by DNA repair systems. The objective of this study is to follow DNA repair and adaptation in haploid cells (birch pollen) and diploid cells (seed embryos of the evening primrose) from plants that have been growing in situ in different radionuclide fall-out sites in monitored regions surrounding the Chernobyl explosion of 1986. METHODS: Radionuclide levels in soil were detected using gamma-spectroscopy and radiochemistry. DNA repair assays included measurement of unscheduled DNA synthesis, electrophoretic determination of single-strand DNA breaks and image analysis of rDNA repeats after repair intervals. Nucleosome levels were established using an ELISA kit. KEY RESULTS: Birch pollen collected in 1987 failed to perform unscheduled DNA synthesis, but pollen at gamma/beta-emitter sites has now recovered this ability. At a site with high levels of combined alpha- and gamma/beta-emitters, pollen still exhibits hidden damage, as shown by reduced unscheduled DNA synthesis and failure to repair lesions in rDNA repeats properly. Evening primrose seed embryos generated on plants at the same gamma/beta-emitter sites now show an improved DNA repair capacity and ability to germinate under abiotic stresses (salinity and accelerated ageing). Again those from combined alpha- and gamma/beta-contaminated site do not show this improvement. CONCLUSIONS: Chronic irradiation at gamma/beta-emitter sites has provided opportunities for plant cells (both pollen and embryo cells) to adapt to ionizing irradiation and other environmental stresses. This may be explained by facilitation of DNA repair function.  相似文献   

9.
In this work we investigate the development of a salt marsh environment during the Holocene marine transgression in the North Adriatic coast (North Italy) near the pre-Roman and Roman towns of Cittanova and Concordia Sagittaria. Pollen, plant macrofossils, non-pollen palynomorphs (NPPs) and foraminifers are analysed in cores and archaeological excavations to indicate the development of salt marsh plant communities. Other independent proxies (foraminifers, plant macrofossils, molluscs) confirm the ecological interpretation based on pollen records. The relevance of NPPs as indicators of salt marsh environment is evaluated. Linings of foraminifers are the most frequent NPP type, recorded in 85% of the brackish sediments. They may tentatively be referred to the genus Ammonia, a very common benthonic genus in the present lagoons of the North Adriatic Sea. Radiocarbon dates available from previous work allow the salt marsh development to be dated in the sector from the east of the Lagoon of Venice to the Lagoon of Caorle. Near Cittanova, salt marshes developed before 6700 yrs cal. b.p. At Concordia Sagittaria, the first evidence dates from ca. 6700 yrs cal. b.p. and a phase of freshwater conditions is recorded in the sediments of ca. 4500 yrs cal. b.p.  相似文献   

10.
Fossil pollen data from sediment cores may be used as a measure for past plant diversity. According to the theory of probability, palynological richness is positively related to the pollen count. In a low pollen count, only common taxa are detected, whereas rare taxa are only detected by chance. The detection of all pollen taxa requires a very high pollen count, which is time-consuming. In regular palynological investigations, the detected richness in pollen spectra varies with the pollen count. Rarefaction analysis estimates palynological richness in an exactly equal-sum count for all samples, so that comparison between samples is meaningful. However, the over-representation of some taxa suppresses the detection probability of rare taxa; low total pollen abundance in a sample enhances the detection probability of rare taxa and long-distance transported pollen grains. These factors bias the observed palynological richness and distort comparisons. Palynological richness in a pollen count proportional to its pollen influx may be one proxy for reconstructing diversity trends through time. The use of this proxy overcomes most problems encountered in rarefaction analysis, but is constrained by inaccuracy in estimating pollen influx due to the imprecise time control of sediment cores. Estimating palynological richness by mathematical methods may be another way of reconstructing pollen diversity. Pollen data tend to reflect diversity on a regional scale. Sites from small basins have the advantage of recording diversity at both local and regional scales, if the detection of each taxon is independent. By associating one site from a large basin with a series of sites from very small basins (e.g. forest-hollows), information about both regional and local diversity may be obtained. Entomophilous pollen taxa may have to be measured using a different strategy than anemophilous taxa.  相似文献   

11.
In recent years, several studies have reported the successful extraction of ancient DNA (aDNA) from both frozen and nonfrozen sediments (even in the absence of macrofossils) in order to obtain genetic "profiles" from past environments. One of the hazards associated with this approach, particularly in nonfrozen environments, is the potential for vertical migration of aDNA across strata. To assess the extent of this problem, we extracted aDNA from sediments up to 3300 years old at 2 cave sites in the North Island of New Zealand. These sites are ideal for this purpose as the presence or absence of DNA from nonindigenous fauna (such as sheep) in sediments deposited prior to European settlement can serve as an indicator of DNA movement. Additionally, these strata are well defined and dated. DNA from sheep was found in strata that also contained moa DNA, indicating that genetic material had migrated downwards. Quantitative polymerase chain reaction analyses demonstrated that the amount of sheep DNA decreased as the age of sediments increased. Our results suggest that sedimentary aDNA is unlikely to be deposited from wind-borne DNA and that physical remains of organisms or their ejecta need to have been incorporated in the sediments for their DNA to be detected. Our study indicates that DNA from sediments can still offer a rich source of information on past environments, provided that the risk from vertical migration can be controlled for.  相似文献   

12.
In this paper we test the performance of the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using pollen records from multiple small sites. We use Holocene pollen records from large and small sites in southern Sweden to identify what is/are the most significant variable(s) affecting the REVEALS-based reconstructions, i.e. type of site (lakes and/or bogs), number of sites, site size, site location in relation to vegetation zones, and/or distance between small sites and large sites. To achieve this objective we grouped the small sites according to (i) the two major modern vegetation zones of the study region, and (ii) the distance between the small sites and large lakes, i.e. small sites within 50, 100, 150, or 200 km of the large lakes. The REVEALS-based reconstructions were performed using 24 pollen taxa. Redundancy analysis was performed on the results from all REVEALS-model runs using the groups within (i) and (ii) separately, and on the results from all runs using the groups within (ii) together. The explanatory power and significance of the variables were identified using forward selection and Monte Carlo permutation tests. The results show that (a) although the REVEALS model was designed for pollen data from large lakes, it also performs well with pollen data from multiple small sites in reconstructing the percentage cover of groups of plant taxa (e.g. open land taxa, summer-green trees, evergreen trees) or individual plant taxa; however, in the case of this study area, the reconstruction of the percentage cover of Calluna vulgaris, Cyperaceae, and Betula may be problematic when using small bogs; (b) standard errors of multiple small-site REVEALS estimates will generally be larger than those obtained using pollen records from large lakes, and they will decrease with increasing size of pollen counts and increasing number of small sites; (c) small lakes are better to use than small bogs if the total number of small sites is low; and (d) the size of small sites and the distance between them do not play a major role, but the distance between the small sites and landscape/vegetation boundaries is a determinant factor for the accuracy of the vegetation reconstructions.  相似文献   

13.
We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.  相似文献   

14.
Aim To obtain palaeobotanical evidence enabling evaluation of the viability of the hypothesis that the ‘oriental’ element of the Balkan flora reached south‐east Europe from Turkey prior to the Holocene, probably via the Thracian Plain during a late Quaternary glacial stage but no later than the late Weichselian. Location Ezero wetland, northern Thracian Plain, Bulgaria. Methods We undertook analyses of pollen and microspores, plant macrofossils, wood fragments and molluscs recovered from sediments deposited in the Ezero wetland during the late Weichselian and Weichselian late‐glacial. Sediment chronology was determined using radiocarbon age estimates. Results Six metres of sediments were recovered from the basin, of which the lower 3 m, extending from c. 15,450 cal yr bp to the early Allerød, was analysed. A major hiatus occurred after c. 13,900 cal yr bp , the overlying sediments being of late Holocene age. Palaeobotanical evidence indicates predominantly open vegetation during the Weichselian late‐glacial, although macrofossil remains of woody taxa demonstrate the local presence of patches of wooded steppe and gallery forest. Changes in the composition of the steppe vegetation, and in the nature of the sediments deposited in the basin, indicate changes in climatic conditions, especially in the hydrological regime and in the moisture available to vegetation. After an initially relatively moister phase, the final centuries of the late Weichselian were drier, as was a short interval that may correlate with the Older Dryas. Moister conditions characterize intervals corresponding to the Bølling and Allerød sub‐units of the Weichselian late‐glacial interstadial. Although the pollen evidence is thus consistent with that from previous studies of this period in south‐east Europe and south‐west Asia, indicating predominantly open steppe vegetation, the macrofossil evidence indicates the persistent local presence of woody taxa. The woody taxa recorded include Celtis tournefortii‐type and Juniperus cf. J. excelsa, two taxa today characteristic of the wooded steppes of Anatolia and members of the ‘oriental’ element of the southern Balkan flora, as well as Rosaceae Subfams. Maloideae and Prunoideae, Alnus and Fraxinus. Main conclusions The late Weichselian vegetation of the northern Thracian Plain included patches of wooded steppe that supported members of the ‘oriental’ element of the modern Balkan flora. The presence of such taxa renders viable the hypothesis that they could have reached south‐east Europe from Turkey via the Thracian Plain during glacial times. Such hypotheses in historical biogeography can be evaluated critically using the evidence obtained from plant macrofossil analyses in combination with that from pollen analysis.  相似文献   

15.
Reconstruction of past climate change and ecosystem response is important to correctly assess the impacts of global warming. In this study, we provide a paleoenvironmental record of in-lake and catchment changes in northern Poland during the Late Glacial and early Holocene using various biotic proxies (pollen, macrofossils and Cladocera) preserved in the lake sedimentary record. Chronology was derived from palynological correlation with a well-dated pollen sequence from nearby-lying Lake Ostrowite and some well-dated events of vegetation history in Central Europe. Pollen analysis provided information on regional climate change affecting vegetation dynamics, whereas macrofossils supplied substantial information on the response of local flora and fauna to climatic, geomorphological and limnological changes. Data were supplemented by analysis of Cladocera remains, which are of special importance because of their quick response to changes in trophic conditions and climate (especially temperature). The bottom of the sediment core reflects an initial stage of the lake formed during the late Aller?d. The Younger Dryas cooling apparently resulted in forest recession and presence of cold tolerant Cladocera species. Due to amelioration of climate at the end of the Younger Dryas and melting of ice, the lake deepened. The beginning of the Holocene was characterised by forest shrinkage and induced clear changes in local flora and fauna communities. The regional vegetation development deduced from the lake’s core is generally consistent with the vegetation history of central Europe. Due to the location of the site near the seashore (oceanic climate and western wind), signals of warming came earlier than inland and in eastern Poland.  相似文献   

16.
Obtaining quantitative information concerning pollinator behaviour has become a primary objective of pollination studies, but methodological limitations hinder progress towards this goal. Here, we use molecular genetic methods in an ecological context to demonstrate that endemic Hawaiian Hylaeus bees (Hymenoptera: Colletidae) selectively collect pollen from native plant species in Haleakala and Hawaii Volcanoes National Parks. We identified pollen DNA from the crops (internal storage organs) of 21 Hylaeus specimens stored in ethanol for up to 3 years. Genetic analyses reveal high fidelity in pollen foraging despite the availability of pollen from multiple plant species present at each study site. At high elevations in Haleakala, pollen was available from more than 12 species of flowering plants, but Hawaiian silversword (Argyroxiphium sandwicense subsp. macrocephalum) comprised 86% of all pollen samples removed from bee crops. At lower elevations in both parks, we only detected pukiawe (Leptecophylla (Styphelia) tameiameiae) pollen in Hylaeus crops despite the presence of other plant species in flower during our study. Furthermore, 100% of Hylaeus crops from which we successfully identified pollen contained native plant pollen. The molecular approaches developed in this study provide species-level information about floral visitation of Hawaiian Hylaeus that does not require specialized palynological expertise needed for high-throughput visual pollen identification. Building upon this approach, future studies can thus develop appropriate and customized criteria for assessing mixed pollen loads from a broader range of sources and from other global regions.  相似文献   

17.
Aim To reconstruct the last c. 7000 years of vegetation and climate change in an unusual region of modern Great Plains grassland and scarp woodland in south‐east Colorado (USA), and to determine the late Holocene biogeography of Colorado piñon (Pinus edulis) at its easternmost extent, using a series of radiocarbon‐dated packrat (Neotoma sp.) middens. Location The West Carrizo Canyon drains the Chaquaqua Plateau, a plateau that projects into the western extent of the southern Great Plains grasslands in south‐eastern Colorado, USA. Elevations of the study sites are 1448 to 1525 m a.s.l. Today the plateau is mostly Juniperus scopulorumP. edulis woodland. Methods Plant macrofossils and pollen assemblages were analysed from 11 14C‐dated packrat middens. Ages ranged from 5990 yr bp (6839 cal. yr bp ) to 280 yr bp (485 cal. yr bp ). Results The results presented here provide information on the establishment and expansion of JuniperusP. edulis woodland at its eastern limits. The analysis of both plant macrofossils and pollen from the 11 middens documents changes in plant communities over the last 7000 years, and the establishment of P. edulis at its easternmost limit. Though very minor amounts of P. edulis pollen occur as early as the middle Holocene, plant macrofossils were only recovered in middens dating after c. 480 cal. yr bp . Main conclusions Originally, midden research suggested a late glacial refuge to the north‐east of the Carrizo Canyon site, and a middle Holocene expansion of P. edulis. Results reported here are consistent with a late Holocene expansion, here at its eastern limits, but noted elsewhere at its northern and north‐eastern limits. In general, this late Holocene expansion is consistent with pollen data from sediments in Colorado and New Mexico, and suggests that P. edulis is still expanding its range at its present extremes. This has implications for further extension of its range due to changing climatic conditions in the future.  相似文献   

18.
Fluctuations in intensity of human impact and corresponding vegetation changes have been reported from different parts of Europe for the period from the beginning of the 1st millennium ad to the high Middle Ages. In the Bílé Karpaty mountains (White Carpathians), a region well-known for its biologically valuable ancient grasslands, an extensive spread of woodland could have occurred in the Migration period (4th–6th century) and especially in the Confinium period (11th–12th century), when settling of this border region was legally prohibited. However, Holocene continuity of non-woodland vegetation was suggested as an explanation for the unique species richness of the local grasslands. If this explanation is true, then the turbulent times in medieval history could not have led to complete re-establishment of woodland. To test this idea palaeoecologically, we analysed four new profiles from wetland deposits for pollen, macrofossils and abiotic proxies, and re-dated some old profiles from the area. The results show the continual presence of human impact indicators since the Migration period in the southwest of the Bílé Karpaty, where these unique grasslands occur. Agricultural activities were indicated by pollen of crops, ruderals, weeds and grassland taxa and by macrofossils of fen-grassland plants. Grazing and burning seem to have been the main disturbances during the older period, while mowing of meadows by scythe became more important since the 17th century. Fossil records differed among the sites as a consequence of differences in altitude and disturbance regimes, but converged gradually with time. Despite intensification of human activities, the landscape remained mosaic-like. Indicators of undisturbed woodlands have been detected only in the northeast. Continuous yet perhaps never too intensive disturbances might therefore have maintained the ancient grassland species pool in the long term.  相似文献   

19.
Monosulcate pollen was produced by at least six plant orders in the Mesozoic. Megafossils of these orders are abundant in many Mesozoic sediments, but dispersed monosulcate pollen grains are commonly less than 10% of total sporomorphs (spores and pollen) in a sample. This paper presents possible explanations for the different relative frequencies of megafossils and pollen grains of monosulcate-producing plants (some of the explanations apply to only a few taxa): fragility of the pollen exines, destruction of the pollen on the plant by insects, poor pollen dispersal because of zoophily and small plant size, and, probably most importantly, overrepresentation of the plants by their generally deciduous leaves. Mesozoic monosulcate pollen was different in several ways from pollen of modern gymnosperms; furthermore, monosulcate-producing plants were not as abundant in the Mesozoic vegetation as has been generally thought.  相似文献   

20.
1. Sedimentary remains of aquatic plants, both vegetative (turions, leaves, spines) and reproductive (fruits, seeds, pollen), may provide a record of temporal changes in the submerged vegetation of lakes. An independent assessment of the degree to which these remains reflect past floristic change is, however, rarely possible. 2. By exploiting an extensive series of historical plant records for a small shallow lake we compare plant macrofossil (three cores) and pollen (one core) profiles with the documented sequence of submerged vegetation change since c. 1750 AD. The data set is based on 146 site visits with 658 observations including 42 taxa classified as aquatic, spanning 250 years. 3. Approximately 40% of the historically recorded aquatic taxa were represented by macro‐remains. In general macrofossils underestimated past species diversity, with pondweeds (three of eight historically recorded Potamogeton species were found) particularly poorly represented. Nonetheless, several taxa not reported from historical surveys (e.g. Myriophyllum alterniflorum and Characeae) were present in the sediment record. 4. The pollen record revealed taxa which left no macro‐remains (e.g. Littorella uniflora), and the macrofossil record provided improved taxonomic resolution for some taxa (e.g. Potamogeton) and a more reliable record of persistence, appearance and loss of others (e.g. Myriophyllum spp. and Nymphaeaceae). 5. Detrended correspondence analysis indicated that changes in the community composition evidenced by the palaeolimnological and historical records were synchronous and of a similar magnitude. Both records pointed to a major change at around 1800, with the historical record suggesting a more abrupt change than the sedimentary data. There was good agreement on a subsequent change c. 1930. 6. The palaeolimnological data did not provide a complete inventory of historically recorded species. Nevertheless, these results suggest that combined macrofossil and pollen records provide a reliable indication of temporal change in the dominant components of the submerged and floating‐leaved aquatic vegetation of shallow lakes. As such palaeolimnology may provide a useful tool for establishing community dynamics and successions of plants over decadal to centennial timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号