共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xiaowen Feng Nan Liang Dexiao Zhu Qing Gao Lei Peng Haiman Dong Qingwei Yue Haili Liu Lihua Bao Jing Zhang Jing Hao Yingmao Gao Xuejie Yu Jinhao Sun 《PloS one》2013,8(3)
Alzheimer’s disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ) and loss of neurons. Recently, a growing body of evidences have indicated that as a herbal compound naturally derived from grapes, resveratrol modulates the pathophysiology of AD, however, with a largely unclear mechanism. Therefore, we aimed to investigate the protection of resveratrol against the neurotoxicity of β-amyloid peptide 25–35 (Aβ25–35) and further explore its underlying mechanism in the present study. PC12 cells were injuried by Aβ25–35, and resveratrol at different concentrations was added into the culture medium. We observed that resveratrol increased cell viability through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) colorimetric assays. Flow cytometry indicated the reduction of cell apoptosis by resveratrol. Moreover, resveratrol also stabilized the intercellular Ca2+ homeostasis and attenuated Aβ25–35 neurotoxicity. Additionally, Aβ25–35-suppressed silent information regulator 1 (SIRT1) activity was significantly reversed by resveratrol, resulting in the downregulation of Rho-associated kinase 1 (ROCK1). Our results clearly revealed that resveratrol significantly protected PC12 cells and inhibited the β-amyloid-induced cell apoptosis through the upregulation of SIRT1. Moreover, as a downstream signal molecule, ROCK1 was negatively regulated by SIRT1. Taken together, our study demonstrated that SIRT1-ROCK1 pathway played a critical role in the pathomechanism of AD. 相似文献
3.
Although a growing body of evidence supports the importance of the Wnt/β-catenin signaling pathway and oxidative stress in the pathogenesis of autism, it is unclear whether a relationship exists between the Wnt/β-catenin pathway and oxidative homeostasis. The present study examines the effects of sulindac, a small molecule inhibitor of the Wnt/β-catenin signaling pathway, on the oxidative status of rats that are prenatally exposed to valproic acid (VPA), which is used in an animal model of autism. Our data show that sulindac treatment downregulated the canonical Wnt/β-catenin signaling pathway by enhancing the expression of Glycogen Synthase Kinase 3β and attenuating the expression of β-catenin in comparison to levels in VPA-treated rats. Concomitantly, a marker of lipid peroxidation, 4-hydroxynonenal, was reduced as well. Sulindac treatment ameliorated the pain threshold, repetitive/stereotypic activity, learning and memory abilities and behavioral abnormalities of rats in our autism model. Our working model suggests that the upregulation of the Wnt/β-catenin signaling pathway induced by VPA administration during early pregnancy produces an imbalance of oxidative homeostasis that facilitates susceptibility to autism. This information may be instrumental in designing appropriate therapeutic regimens with small molecule inhibitors of the Wnt/β-catenin pathway for the treatment of autism-like behavioral phenotypes. 相似文献
4.
5.
Weichun He Ruoyun Tan Chunsun Dai Yingjian Li Dan Wang Sha Hao Michael Kahn Youhua Liu 《The Journal of biological chemistry》2010,285(32):24665-24675
Plasminogen activator inhibitor-1 (PAI-1) is a multifunctional glycoprotein that plays a critical role in the pathogenesis of chronic kidney and cardiovascular diseases. Although transforming growth factor (TGF)-β1 is a known inducer of PAI-1, how it controls PAI-1 expression remains enigmatic. Here we investigated the mechanism underlying TGF-β1 regulation of PAI-1 in kidney tubular epithelial cells (HKC-8). Surprisingly, overexpression of Smad2 or Smad3 in HKC-8 cells blocked PAI-1 induction by TGF-β1, whereas knockdown of them sensitized the cells to TGF-β1 stimulation, suggesting that Smad signaling is not responsible for PAI-1 induction. Blockade of several TGF-β1 downstream pathways such as p38 MAPK or JNK, but not phosphatidylinositol 3-kinase/Akt and ERK1/2, only partially inhibited PAI-1 expression. TGF-β1 stimulated β-catenin activation in tubular epithelial cells, and ectopic expression of β-catenin induced PAI-1 expression, whereas inhibition of β-catenin abolished its induction. A functional T cell factor/lymphoid enhancer-binding factor-binding site was identified in the promoter region of the PAI-1 gene, which interacted with T cell factor upon β-catenin activation. Deletion or site-directed mutation of this site abolished PAI-1 response to β-catenin or TGF-β1 stimulation. Similarly, ectopic expression of Wnt1 also activated PAI-1 expression and promoter activity. In vivo, PAI-1 was induced in kidney tubular epithelia in obstructive nephropathy. Delivery of Wnt1 gene activated β-catenin and promoted PAI-1 expression after obstructive injury, whereas blockade of Wnt/β-catenin signaling by Dickkopf-1 gene inhibited PAI-1 induction. Collectively, these studies identify PAI-1 as a direct downstream target of Wnt/β-catenin signaling and demonstrate that PAI-1 induction could play a role in mediating the fibrogenic action of this signaling. 相似文献
6.
IL-32γ is a multifunctional cytokine involved in various inflammatory and auto-immune diseases in which neutrophils can affect the evolution of these diseases. To persist at inflammatory sites, neutrophils require inhibition of their rapid and constitutive apoptosis, an inhibitory effect that phlogogenic cytokines support. To date, the effects of IL-32γ on neutrophils remain unknown. We demonstrate that IL-32γ delays, in a dose-dependent manner, the spontaneous apoptosis of human blood neutrophils by activating mainly p38 MAPK through rapid p38 phosphorylation. PI3-K and ERK1/2 MAPK are also involved, but to a lesser extent. Most of cytokines that induce retardation of neutrophil apoptosis activate the expression of MCL-1 at both mRNA and protein levels. IL-32γ added to human blood neutrophils in vitro is associated with sustained levels of MCL-1 protein. This effect in neutrophils corresponds to a decrease of MCL-1 protein degradation without any effect on MCL-1 mRNA levels. The sustained levels of MCL-1 induced by IL-32γ are only abrogated by the p38β MAPK inhibitor SB202190. Additionally, IL-32γ induces a reduction in caspase 3 activity in neutrophils. In conclusion, IL-32γ affects human blood neutrophils in vitro by increasing their survival, suggesting that this cytokine could have profound effects on the deleterious functions of neutrophils in several diseases. 相似文献
7.
8.
Zejian Liu Mary Sneve Thomas A. Haroldson Jeffrey P. Smith Lester R. Drewes 《The Journal of biological chemistry》2016,291(15):8059-8069
The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelial Mct1 mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways. 相似文献
9.
Kaihong Zeng Yuan Wang Na Yang Duozi Wang Suping Li Jian Ming Jing Wang Xuemei Yu Yi Song Xue Zhou Bo Deng Xiaona Wu Lujiao Huang Yongtao Yang 《Molecular neurobiology》2017,54(6):4000-4014
The aim of this study was to evaluate the anti-apoptosis effects of resveratrol (RSV) on diabetic rats retinal Müller cells in vivo and in vitro and to further investigate the roles of microRNA-29b (miR-29b)/specificity protein 1 (SP1) in the anti-apoptosis mechanism of RSV. Retina was obtained from normal and diabetic rats with or without RSV (5 and 10 mg/kg/day) treatments at 1–7 months. TdT-mediated dUTP-biotin nick end labeling (TUNEL) and Annexin V/PI staining were used to detect apoptosis. Immunofluorescence was used to assess distribution of SP1 in retina. MiR-29b and SP1 messenger RNA (mRNA) expression was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). SP1, Bax, and bcl-2 protein expression was evaluated by western blotting. Caspase-3 activity was detected by assay kit. Our study showed that the TUNEL-positive cells were mainly localized in the inner nuclear layer (INL) of retina and RSV administration effectively suppressed streptozotocin (STZ)-induced apoptosis of retinal cells in INL in vivo (P?<?0.001). Our study also showed that RSV administration effectively suppressed high glucose (HG)-induced retinal Müller cells’ apoptosis in vitro (P?<?0.001). Furthermore, our study revealed that the diabetes-induced downregulated expression of miR-29b and upregulated expression of SP1 could be rescued by RSV in vivo and in vitro (P?<?0.05). The anti-apoptosis effect and downregulated SP1 expression effect of RSV was prevented by miR-29b inhibitor (P?<?0.05). MiR-29b mimic increased the above-mentioned effects of RSV (P?<?0.001). These findings indicate that RSV is a potential therapeutic option for diabetic retinopathy (DR) and that miR-29b/SP1 pathway play roles in the anti-apoptosis mechanism of RSV. 相似文献
10.
Yi Fang Youjun Feng Tongjin Wu Swaminath Srinivas Weiqiang Yang Jue Fan Chi Yang Shihua Wang 《PloS one》2013,8(8)
MicroRNAs are known to play an important role in modulating gene expression in various diseases including cancers and cardiovascular disorders, but only a few of them are associated with the pathology of aflatoxin B1 (AFB1), a potent mycotoxin. Here, we discovered a novel regulatory network between AFB1, miR-33a and β-catenin in human carcinoma cells. The level of miR-33a was up-regulated in hepatocellular carcinoma (HCC) cells treated with AFB1, while in the same cells causing the decrease in β-catenin expression when treated at their IC50 values. miR-33a, specifically miR-33a-5p, was demonstrated to down-regulate the expression of β-catenin, affect the β-catenin pathway, and inhibit cell growth. Also, by employing a luciferase assay, we found that miR-33a down-regulated β-catenin by directly binding to the 3’-UTR of β-catenin. These results suggested that AFB1 might down-regulate β-catenin by up-regulating miR-33a. This understanding opens new lines of thought in the potential role of miR-33a in the clinical therapy of cancer. 相似文献
11.
12.
β-catenin is a key signaling molecule in the canonical Wnt pathway, which is involved in animal development. However, little information has been reported for β-catenin in bivalves. In the present study, we cloned a homolog of β-catenin from the scallop Chlamys farreri and determined its expression characteristics. The full-length cDNA of β-catenin was 3,353 bp, including a 2,511 bp open reading frame that encoded a predicted 836 amino acid protein. Level of the β-catenin mRNA increased significantly (P<0.05) with C. farreri gonadal development and presented a sexually dimorphic expression pattern in the gonads, which was significantly high in ovaries detected by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis revealed that the β-catenin was mainly located in germ cells of the gonads, with obvious positive immune signals in the oogonia and oocytes of ovaries as well as in the spermatogonia and spermatocytes of testes, implying β-catenin might be involved in the gametogenesis of C. farreri. Furthermore, when 0.1 µg/mL and 0.2 µg/mL DKK-1 (an inhibitor of the canonical Wnt pathway) were added in vitro to culture medium containing testis cells of C. farreri, the expression of β-catenin decreased significantly detected by qRT-PCR (P<0.05), suggesting the canonical Wnt signal pathway exists in the scallop testis. Similarly, when 50 µM and 100 µM quercetin (an inhibitor of β-catenin) were added in vitro to the culture system, Dax1 expression was significantly down-regulated compared with controls (P<0.05), implying the β-catenin is an upstream gene of Dax1 and is involved in the regulation of C. farreri spermatogenesis. 相似文献
13.
14.
15.
Min Ju Park Jong-Hwa Park Soo-Hyun Hahm Sung Il Ko You Ri Lee Ji Hyung Chung Sun Young Sohn Yunje Cho Lin-Woo Kang Ye Sun Han 《DNA Repair》2009,8(10):1190-1200
Rad9–Rad1–Hus1 (9–1–1) is a checkpoint protein complex playing roles in DNA damage sensing, cell cycle arrest, DNA repair or apoptosis. Human 8-oxoguanine DNA glycosylase (hOGG1) is the major DNA glycosylase responsible for repairing a specific aberrantly oxidized nucleotide, 7,8-dihydro-8-oxoguanine (8-oxoG). In this study, we identified a novel interaction between hOGG1 and human 9–1–1, and investigated the functional consequences of this interaction. Co-immunoprecipitation assays using transiently transfected HEK293 cells demonstrated an interaction between hOGG1 and the 9–1–1 proteins. Subsequently, GST pull-down assays using bacterially expressed and purified hOGG1-His and GST-fused 9–1–1 subunits (GST-hRad9, GST-hRad1, and GST-hHus1) demonstrated that hOGG1 interacted directly with the individual subunits of the human 9–1–1 complex. In vitro excision assay, which employed a DNA duplex containing an 8-oxoG/C mismatch, showed that hRad9, hRad1, and hHus1 enhanced the 8-oxoG excision and β-elimination activities of hOGG1. In addition, the presence of hRad9, hRad1, and hHus1 enhanced the formation of covalently cross-linked hOGG1–8-oxoG/C duplex complexes, as determined by a trapping assay using NaBH4. A trimeric human 9–1–1 complex was purified from Escherichia coli cell transformed with hRad9, His-fused hRad1, or His-fused hHus1 expressing vectors. It also showed the similar activity to enhance in vitro hOGG1 glycosylase activity, compared with individual human 9–1–1 subunits. Detection of 8-oxoG in HEK293 cells using flow cytometric and spectrofluorometric analysis revealed that over-expression of hOGG1 or human 9–1–1 reduced the formation of 8-oxoG residues following the H2O2 treatment. The highest 8-oxoG reduction was observed in HEK293 cells over-expressing hOGG1 and all the three subunits of human 9–1–1. These indicate that individual human 9–1–1 subunits and human 9–1–1 complex showed almost the same abilities to enhance the in vitro 8-oxoG excision activity of hOGG1, but that the greatest effect to remove 8-oxoG residues in H2O2-treated cells was derived from the 9–1–1 complex as a whole. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(17):2029-2035
Most efforts thus far have been devoted to develop apoptosis inducers for cancer treatment. However, apoptotic pathway deficiencies are a hallmark of cancer cells. We propose that one way to bypass defective apoptotic pathways in cancer cells is to induce necrotic cell death. Here we show that selective induction of necrotic cell death can be achieved by activation of the DNA damage response pathways. While β-lapachone induces apoptosis through E2F1 checkpoint pathways, necrotic cell death can be selectively induced by β-lapachone in a variety of cancer cells. We found that β-lapachone, unlike DNA damaging chemotherapeutic agents, transiently activates PARP1, a main regulator of the DNA damage response pathway, both in vitro and in vivo. This occurs within minutes of exposure to β-lapachone, resulting in selective necrotic cell death. Inhibition of PAR blocked β-lapachone-induced necrosis. Furthermore, necrotic cell death induced by β-lapachone was significantly reduced in PARP1 knockout cell lines. Our data suggest that selective necrotic cell death can be induced through activation of DNA damage response pathways, supporting the idea of selective necrotic cell death as a therapeutic strategy 相似文献
17.
CC2D1A is an evolutionarily conserved protein that contains four DM14 domains at the N terminus and a C2 domain at the C terminus. Loss-of-function mutations in CC2D1A have been linked to mental retardation in human, but the biochemical function of this protein is largely unknown. Here, we show that CC2D1A is a potent activator of NF-κB. The activation of NF-κB by CC2D1A requires its C2 domain. CC2D1A activates NF-κB in a manner that depends on the ubiquitin-conjugating enzyme Ubc13, TNF receptor-associated factor TRAF2, the protein kinase TAK1, and the IκB kinase (IKK) complex. In addition, the deubiquitination enzyme Cylindromatosis (CYLD) negatively regulates the activity of CC2D1A. These results suggest that CC2D1A activates NF-κB through the canonical IKK pathway. 相似文献
18.
19.
Dandan Zhu Jianxin Wang Xiaolei Sun Jinling Chen Yinong Duan Jing Pan Tianhua Xu Yongwei Qin Xingxin He Caiqun Huang 《The journal of histochemistry and cytochemistry》2015,63(3):163-169
Apoptosis of activated hepatic stellate cells (HSCs) has been verified as a potential mechanism to aid in hepatic fibrosis remission. Earlier research suggests that Septin4_i1 may sensitize hepatocellular carcinoma cells to serum starvation-induced apoptosis. Here, we aimed to investigate the effect of Septin4_i1 on HSC apoptosis and explore the associated signaling pathways. We found that Septin4_i1 can induce apoptosis in LX-2 cells and that this is accompanied by an up-regulation in cleaved-caspase-3 and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and a down-regulation in α-SMA expression. Over-expression of Septin4_i1 reduced phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) expression but had no effect on the expression of p53 and death receptor (DR)-5. The decreased expression of Bcl-2 and the increased expression of cleaved-caspase-3 induced by Sept4_i1 could be reversed by , a PPAR-β/δ agonist that has been reported by others to enhance Akt signaling. In addition, GW9662, an antagonist of PPAR-γ, could also inhibit apoptosis in LX-2 cells induced by Sept4_i1. In conclusion, our data suggest that Sept4_i1 induces HSC apoptosis by inhibiting Akt and Bcl-2 expression and up-regulating PPAR-γ expression. GW501516相似文献
20.
Joke Vandewalle Marion Langen Marlen Zschaetzsch Bonnie Nijhof Jamie M. Kramer Hilde Brems Marijke Bauters Elsa Lauwers Mohammed Srahna Peter Marynen Patrik Verstreken Annette Schenck Bassem A. Hassan Guy Froyen 《PloS one》2013,8(11)
We recently reported that duplication of the E3 ubiquitin ligase HUWE1 results in intellectual disability (ID) in male patients. However, the underlying molecular mechanism remains unknown. We used Drosophila melanogaster as a model to investigate the effect of increased HUWE1 levels on the developing nervous system. Similar to the observed levels in patients we overexpressed the HUWE1 mRNA about 2-fold in the fly. The development of the mushroom body and neuromuscular junctions were not altered, and basal neurotransmission was unaffected. These data are in agreement with normal learning and memory in the courtship conditioning paradigm. However, a disturbed branching phenotype at the axon terminals of the dorsal cluster neurons (DCN) was detected. Interestingly, overexpression of HUWE1 was found to decrease the protein levels of dishevelled (dsh) by 50%. As dsh as well as Fz2 mutant flies showed the same disturbed DCN branching phenotype, and the constitutive active homolog of β-catenin, armadillo, could partially rescue this phenotype, our data strongly suggest that increased dosage of HUWE1 compromises the Wnt/β-catenin pathway possibly by enhancing the degradation of dsh. 相似文献