共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. 相似文献
4.
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that metabolizes ethanol and toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE). Using an unbiased proteomic search, we identified ALDH2 deficiency in stroke-prone spontaneously hypertensive rats (SHR-SP) as compared with spontaneously hypertensive rats (SHR). We concluded the causative role of ALDH2 deficiency in neuronal injury as overexpression or activation of ALDH2 conferred neuroprotection by clearing 4-HNE in in vitro studies. Further, ALDH2-knockdown rats revealed the absence of neuroprotective effects of PKCε. Moderate ethanol administration that is known to exert protection against stroke was shown to enhance the detoxification of 4-HNE, and to protect against ischemic cerebral injury through the PKCε-ALDH2 pathway. In SHR-SP, serum 4-HNE level was persistently elevated and correlated inversely with the lifespan. The role of 4-HNE in stroke in humans was also suggested by persistent elevation of its plasma levels for at least 6 months after stroke. Lastly, we observed that 21 of 1 242 subjects followed for 8 years who developed stroke had higher initial plasma 4-HNE levels than those who did not develop stroke. These findings suggest that activation of the ALDH2 pathway may serve as a useful index in the identification of stroke-prone subjects, and the ALDH2 pathway may be a potential target of therapeutic intervention in stroke. 相似文献
5.
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction. 相似文献
6.
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction. 相似文献
7.
AimsTo examine the effects of metoprolol on expression of myocardial inflammatory cytokines and myocardial function in rats following coronary microembolization (CME). Main methodsMale rats were randomly assigned to receive either sham-operation (control group), CME plus saline (CME group), or CME plus metoprolol (metoprolol group). CME was induced by injecting 3000 polyethylene microspheres (42 μm) into the left ventricle during a 10-second occlusion of the ascending aorta. Metoprolol (2.5 mg/kg) or saline was administered as three intravenous bolus injections after CME. At 3 h, 6 h, 12 h, 24 h and 4 weeks after CME, myocardial function was measured with echocardiography; and the mRNA and protein levels of tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10) and interleukin 1-β (IL-1β) were determined. Key findingsInduced CME led to markedly higher mRNA and protein levels of TNF-α, IL-1β and IL-10 at 3, 6, 12, and 24 h, as well as reduced left ventricular function, compared to the control group. Metoprolol administration reduced TNF-α and IL-1β levels, but increased IL-10 levels at 3, 6, 12, and 24 h compared to the CME group. Moreover, metoprolol treatment resulted in significantly improved left ventricular function at 12 h, 24 h and 4 weeks, but afforded no cardiac protection at 3 h and 12 h, compared to the CME group. SignificanceHigher levels of TNF-α and IL-1β in rats following CME are associated with the development of myocardial contractile dysfunction. Metoprolol-conferred protection against progressive contractile dysfunction following CME may be mediated by its anti-inflammation potential. 相似文献
9.
Sleep apnea syndrome (SAS) is considered to be associated with heart failure (HF). It is known that autophagy is induced in various heart diseases thereby promotes survival, but its excess may be maladaptive. Intermittent hypoxia (IH) plays pivotal role in the pathogenesis of SAS. We aimed to clarify the relationships among IH, autophagy, and HF. Rats underwent IH at a rate of 20 cycles/h (nadir of 4% O2 to peak of 21% O2 with 0% CO2) or normal air breathing (control) for 8 h/d for 3 weeks. IH increased the cardiac LC3II/LC3I ratio. The IH induced upregulation of LC3II was attenuated by the administration of an inhibitor of autophagosome formation 3-methyladenine (3-MA), but enhanced by an inhibitor of autophagosome–lysosome fusion chloroquine (CQ), showing enhanced autophagic flux in IH hearts. Electron microscopy confirmed an increase in autophagosomes and lysosomes in IH. With 3-MA or CQ, IH induced progressive deterioration of fractional shortening (FS) on echocardiography over 3 weeks, although IH, 3-MA, or CQ alone had no effects. With CQ, IH for 4 weeks increased serum troponin T levels, reflecting necrosis. Western blotting analyses showed dephosphorylation of Akt and mammalian target of rapamycin (mTOR) at Akt (Ser2448, 2481) sites, suggesting the activation of autophagy via Akt inactivation. Conclusions. IH-mediated autophagy maintains contractile function, whereas when autophagy is inhibited, IH induces systolic dysfunction due to myocyte necrosis. General significance. This study highlighted the potential implications of autophagy in cardio-protection in early SAS patients without comorbidity, reproduced in normal rats by 3 ~ 4 weeks of IH. 相似文献
10.
ER stress triggers myocardial contractile dysfunction while effective therapeutic regimen is still lacking. Mitochondrial aldehyde dehydrogenase (ALDH2), an essential mitochondrial enzyme governing mitochondrial and cardiac function, displays distinct beneficial effect on the heart. This study was designed to evaluate the effect of ALDH2 on ER stress-induced cardiac anomalies and the underlying mechanism involved with a special focus on autophagy. WT and ALDH2 transgenic mice were subjected to the ER stress inducer thapsigargin (1 mg/kg, i.p., 48 h). Echocardiographic, cardiomyocyte contractile and intracellular Ca 2 + properties as well as myocardial histology, autophagy and autophagy regulatory proteins were evaluated. ER stress led to compromised echocardiographic indices (elevated LVESD, reduced fractional shortening and cardiac output), cardiomyocyte contractile and intracellular Ca 2 + properties and cell survival, associated with upregulated autophagy, dampened phosphorylation of Akt and its downstream signal molecules TSC2 and mTOR, the effects of which were alleviated or mitigated by ALDH2. Thapsigargin promoted ER stress proteins Gadd153 and GRP78 without altering cardiomyocyte size and interstitial fibrosis, the effects of which were unaffected by ALDH2. Treatment with thapsigargin in vitro mimicked in vivo ER stress-induced cardiomyocyte contractile anomalies including depressed peak shortening and maximal velocity of shortening/relengthening as well as prolonged relengthening duration, the effect of which was abrogated by the autophagy inhibitor 3-methyladenine and the ALDH2 activator Alda-1. Interestingly, Alda-1-induced beneficial effect against ER stress was obliterated by autophagy inducer rapamycin, Akt inhibitor AktI and mTOR inhibitor RAD001. These data suggest a beneficial role of ALDH2 against ER stress-induced cardiac anomalies possibly through autophagy reduction. 相似文献
12.
Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress (“preconditioning”) is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases. 相似文献
13.
Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress (preconditioning) is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases. 相似文献
14.
The major cellular antioxidant, glutathione, is mostly localized in the cytosol but a small portion is found in mitochondria. We have recently shown that highly selective depletion of mitochondrial glutathione in astrocytes in culture markedly increased cell death induced by the peroxynitrite donor, 3-morpholino-syndnonimine. The present study was aimed at characterizing the increase in susceptibility arising from mitochondrial glutathione loss and testing the possibility that elevating this metabolite pool above normal values could be protective. The increased vulnerability of astrocytes with depleted mitochondrial glutathione to Sin-1 was confirmed. Furthermore, these cells showed marked increases in sensitivity to hydrogen peroxide and also to high concentrations of the nitric oxide donor, S-nitroso-N-acetyl-penicillamine. The increase in cell death was mostly due to necrosis as indicated by substantially increased release of lactate dehydrogenase and staining of nuclei with propidium iodide but little change in annexin V staining and caspase 3 activation. The enhanced cell loss was blocked by prior restoration of the mitochondrial glutathione content. It was also essentially fully inhibited by treatment with cyclosporin A, consistent with a role for the mitochondrial permeability transition in the development of cell death. Susceptibility to the classical apoptosis inducer, staurosporine, was only affected to a small extent in contrast to the response to the other substances tested. Incubation of normal astrocytes with glutathione monoethylester produced large and long-lasting increases in mitochondrial glutathione content with much smaller effects on the cytosolic glutathione pool. This treatment reduced cell death on exposure to 3-morpholino-syndnonimine or hydrogen peroxide but not S-nitroso-N-acetyl-pencillamine or staurosporine. These findings provide evidence for an important role for mitochondrial glutathione in preserving cell viability during periods of oxidative or nitrative stress and indicate that increases in this glutathione pool can confer protection against some of these stressors. 相似文献
15.
BackgoundAnimal studies suggest that reactive oxygen species (ROS) play an important role in the development of diabetic cardiomyopathy. HypothesisMatrix metalloproteinase-2 (MMP-2) is activated by ROS and contributes to the acute loss of myocardial contractile function by targeting and cleaving susceptible proteins including troponin I (TnI) and α-actinin. MethodsUsing the streptozotocin-induced diabetic rat model, we evaluated the effect of daily in vivo administration of sodium selenate (0.3 mg/kg; DMS group), or a pure omega-3 fish oil with antioxidant vitamin E (omega-3E; 50 mg/kg; DMFA group), which has antioxidant-like effects, for 4 weeks on heart function and on several biochemical parameters related to oxidant stress and MMP-2. ResultsAlthough both treatments prevented the diabetes-induced depression in left ventricular developed pressure (LVDP) as well as the rates of changes in developed pressure (±dP/dt) ( P<.001), the improvement in LVDP of the DMS group was greater compared to that of the DMFA group ( P<.001). Moreover, these treatments reduced the diabetes-induced increase in myocardial oxidized protein sulfhydryl and nitrite concentrations ( P<.001). Gelatin zymography and Western blot data indicated that the diabetes-induced changes in myocardial levels of MMP-2 and tissue inhibitor of matrix metalloproteinase-4 (TIMP-4) and the reduction in TnI and α-actinin protein levels were improved in both the DMS and DMFA groups ( P<.001). ConclusionsThese results suggest that diabetes-induced alterations in MMP-2 and TIMP-4 contribute to myocardial contractile dysfunction by targeting TnI and α-actinin and that sodium selenate or omega-3E could have therapeutic benefits in diabetic cardiomyopathy. 相似文献
16.
BackgroundProtection of pancreatic islet cells against dysfunction or death by regulating autophagy is considered to be an effective method for treatment of type 2 diabetes mellitus (T2DM). Morus alba leaves (mulberry leaves), a popular herbal medicine, have been used for prevention of T2DM since ancient times. PurposeThis study aimed to clarify whether Morus alba leaves ethanol extract (MLE) could protect islet cells in vivo and in vitro by regulating autophagy in T2DM, and explore the possible mechanism of action. MethodsThe main chemical constituents in MLE were analyzed by HPLC. The T2DM rat model was induced via high-fat diet combined with peritoneal injection of low-dose streptozotocin, and MLE was administered by oral gavage. Fasting blood glucose (FBG) and plasma insulin were measured, and homeostatic model assessment of β cell function (HOMA-β) and insulin resistance (HOMA-IR) were determined. The histomorphology of pancreas islets was evaluated by haematoxylin and eosin staining. In palmitic acid (PA)-stressed INS-1 rat insulinoma cells, cell viability was assayed by an MTT method. Expression of the autophagy-related proteins LC3 I/II, p62, p-AMPK and p-mTOR in islet tissues and INS-1 cells was evaluated by western blotting or immunohistochemistry analysis. ResultsThe four main chemical constituents in MLE were identified as chlorogenic acid, rutin, isoquercitrin and quercitrin. MLE ameliorated hyperglycemia, insulin resistance and dyslipidemia of T2DM rats with prominent therapeutic effect. Further study indicated that MLE observably improved islet function, alleviated islet injury of T2DM rats, and inhibited PA-induced INS-1 cell death. On the other hand, MLE significantly induced autophagy in islet cells both in vivo and in vitro, and autophagy inhibitors abolished its therapeutic effect on T2DM rats and protective effect on islet cells. Apart from this, MLE markedly activated the AMPK/mTOR pathway in INS-1 cells, and the AMPK inhibitor prevented the autophagy induction ability of MLE. ConclusionTogether, MLE could protect islet cells against dysfunction and death by inducing AMPK/mTOR-mediated autophagy in T2DM, and these findings provide a new perspective for understanding the treatment mechanism of Morus alba leaves against T2DM. 相似文献
17.
BackgroundThe present study investigated the effects of rutin (RUT), which has various biological and pharmacological properties, on liver and kidney damage caused by histone deacetylase inhibitor valproic acid (VPA), which is used in the treatment of many psychiatric disorders. Methods and resultsIn the study, 50 or 100 mg/kg RUT treatment was administered 30 min after 500 mg/kg VPA was given to rats for 14 days. Then, some pathways that may be involved in the damage mechanism of VPA in liver and kidney tissues were investigated using biochemical, RT-PCR and Western blotting techniques. The results displayed that the levels of MDA induced by VPA in liver and kidney tissues decreased after RUT treatment, and the levels of SOD, CAT, GPx and GSH suppressed by VPA increased after RUT administration. It was observed that ER stress induced by oxidative stress was alleviated by suppressing the expressions of ATF-6, PERK, IRE1 and GRP78 after RUT treatment. It was observed that the expressions of NF-κB, TNF-α, IL-6, JAK2 and STAT3 in the inflammatory pathway increased after VPA administration, while RUT treatment decreased the levels of these markers. It was also among the data obtained that the levels of markers that played a role in the regulation of apoptosis (Bax, Bcl-2, caspase-3, pERK, pJNK) or autophagy (Beclin-1, LC3A, LC3B) approached the control group after RUT treatment. ConclusionsTaken together, it was determined that RUT treatment protected against liver and kidney damage by attenuating VPA-induced oxidative stress, ER stress, inflammation, apoptosis and autophagy. 相似文献
18.
Autophagy is a major pathway for the delivery of proteins or organelles to be degraded in the vacuole and recycled. It can be induced by abiotic stresses, senescence, and pathogen infection. Recent research has shown that autophagy is activated by ER stress. Here we review the major progress that has been made in the study of autophagy and ER stress in plants, and describe the links between ER stress and autophagy to guide further study on how autophagy is regulated in response to ER stress. 相似文献
19.
Myocardial contractile dysfunction accompanies both systemic and cardiac insults. Septic shock and burn trauma can lead to reversible contractile deficits, whereas ischemia and direct inflammation of the heart can precipitate transient or permanent impairments in contractility. Many of the insults that trigger contractile dysfunction also activate the innate immune system. Activation of the innate immune response to infection is coordinated by the conserved Toll/interleukin-1 (IL-1) signal transduction pathway. Interestingly, components of this pathway are also expressed in normal and failing hearts, although their function is unknown. The hypotheses that Toll/IL-1 signaling occurs in the heart and that intact pathway function is required for contractile dysfunction after different insults were tested. Results from these experiments demonstrate that lipopolysaccharides (LPS) activate Toll/IL-1 signaling and IL-1 receptor-associated kinase-1 (IRAK1), a critical pathway intermediate in the heart, indicating that the function of this pathway is not limited to immune system tissues. Moreover, hearts lacking IRAK1 exhibit impaired LPS-triggered downstream signal transduction. Hearts from IRAK1-deficient mice also resist acute LPS-induced contractile dysfunction. Finally, IRAK1 inactivation enhances survival of transgenic mice that develop severe myocarditis and lethal heart failure. Thus the Toll/IL-1 pathway is active in myocardial tissue and interference with pathway function, through IRAK1 inactivation, may represent a novel strategy to protect against cardiac contractile dysfunction. 相似文献
20.
Paraquat, a quaternary nitrogen herbicide, is a highly toxic pro-oxidant that causes multiorgan failure including that of the heart via generation of reactive oxygen species, although the underlying mechanism has not been well elucidated. This study examined the influence of cardiac-specific overexpression of catalase, an antioxidant detoxifying H(2)O(2), on paraquat-induced myocardial geometric and functional alterations, with a focus on ER stress. FVB and catalase transgenic mice were administered paraquat for 48h. Myocardial geometry, contractile function, apoptosis, and ER stress were evaluated using echocardiography, edge detection, caspase-3 activity, and immunoblotting. Our results revealed that paraquat treatment significantly enlarged left ventricular (LV) end diastolic and systolic diameters; increased LV mass and resting myocyte length; reduced fractional shortening, cardiomyocyte peak shortening, and maximal velocity of shortening/relengthening; and prolonged relengthening duration in the FVB group. Whereas the catalase transgene itself did not alter myocardial geometry and function, it mitigated or significantly attenuated paraquat-elicited myocardial geometric and functional changes. Paraquat promoted overt apoptosis and ER stress as evidenced by increased caspase-3 activity, apoptosis, and ER stress markers including Bax, Bcl-2, GADD153, calregulin, and phosphorylated JNK, IRE1α, and eIF2α; all were ablated by the catalase transgene. Paraquat-induced cardiomyocyte dysfunction was mitigated by the ER stress inhibitor tauroursodeoxycholic acid. Moreover, the JNK inhibitor SP600125 reversed paraquat-induced ER stress as evidenced by enhanced GADD153 and IRE1α phosphorylation. Taken together, these data revealed that catalase may rescue paraquat-induced myocardial geometric and functional alteration possibly by alleviating JNK-mediated ER stress. 相似文献
|