首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separate groups of subterranean termites (Reticulitermes sp.) were exposed to whole cultures of Beauveria bassiana, Gliocladium virens, or Metarhizium anisopliae. Individuals were removed after varying time intervals and hindgut contents were plated onto potato dextrose agar. Viable spores first appeared in the hindguts within 8 hr of exposure. Fungi reisolated from the hindguts of diseased termites were pathogenic of healthy termites. Histological examination showed that invasion of the hemocoel by M. anisopliae occurred exclusively through direct invasion of the integument ca. 24 hr after death. B. bassiana invaded, primarily through the alimentary tract, ca. 12 hr prior to termite death.  相似文献   

2.
Folate Cross-Feeding Supports Symbiotic Homoacetogenic Spirochetes   总被引:3,自引:1,他引:2       下载免费PDF全文
Treponema primitia, an H2-consuming CO2-reducing homoacetogenic spirochete in termite hindguts, requires an exogenous source of folate for growth. Tetrahydrofolate (THF) acts as a C1 carrier in CO2-reductive acetogenesis, a microbially mediated process important to the carbon and energy requirements of termites. To examine the hypothesis that other termite gut microbes probably supply some form of folate to T. primitia in situ, we used a bioassay to screen for and isolate folate-secreting bacteria from hindguts of Zootermopsis angusticollis, which is the host of T. primitia. Based on morphology, physiology, and 16S rRNA gene sequences, the major folate secretors were identified as strains of Lactococcus lactis and Serratia grimesii. During growth, these isolates secreted 5-formyl-THF at levels up to 146 ng/ml, and their cell-free culture fluids satisfied the folate requirement of T. primitia strains in vitro. Analysis of Z. angusticollis hindgut fluid revealed that 5-formyl-THF was the only detectable folate compound and occurred at an in situ concentration (1.3 μg/ml) which was more than sufficient to support the growth of T. primitia. These results imply that cross-feeding of 5-formyl-THF by other community members is important for growth of symbiotic hindgut spirochetes and thus termite nutrition and survival.  相似文献   

3.
白蚁与微生物的共生关系是目前较受关注的研究热点,其肠道及巢内的共生微生物在降解木质纤维素的过程中扮演着重要的角色。放线菌是这些共生微生物中的重要一类,广泛存在于肠道、蚁巢及其周围土壤中,目前已探明共生放线菌在参与白蚁碳氮循环及保护巢群免受外来病菌侵染等方面发挥着极大的作用。近年来,人们利用分子生物学技术鉴定了部分共生放线菌的类群,发现了许多具应用前景的新放线菌及相关酶和代谢产物。因此,研究与白蚁相关的放线菌不仅有助于人们了解白蚁共生菌群落间的互作及其与宿主间的关系,而且对人类开发自然资源也有较大的帮助。本文对白蚁共生放线菌的研究进展作一综述,供同行参考。  相似文献   

4.
Foregut fermentation occurs in mammalian ruminants and in one bird, the South American folivorous hoatzin. This bird has an enlarged crop with a function analogous to the rumen, where foregut microbes degrade the otherwise indigestible plant matter, providing energy to the host from foregut fermentation, in addition to the fermentation that occurs in their hindguts (cecum/colon). As foregut fermentation represents an evolutionary convergence between hoatzins and ruminants, our aim was to compare the community structure of foregut and hindgut bacterial communities in the cow and hoatzin to evaluate the influences of host phylogeny and organ function in shaping the gut microbiome. The approach used was to hybridize amplified bacterial ribosomal RNA genes onto a high-density microarray (PhyloChip). The results show that the microbial communities cluster primarily by functional environment (foreguts cluster separately from hindguts) and then by host. Bacterial community diversity was higher in the cow than in the hoatzin. Overall, compared with hindguts, foreguts have higher proportions of Bacteroidetes and Spirochaetes, and lower proportions of Firmicutes and Proteobacteria. The main host differences in gut bacterial composition include a higher representation of Spirochaetes, Synergistetes and Verrucomicrobia in the cow. Despite the significant differences in host phylogeny, body size, physiology and diet, the function seems to shape the microbial communities involved in fermentation. Regardless of the independent origin of foregut fermentation in birds and mammals, organ function has led to convergence of the microbial community structure in phylogenetically distant hosts.  相似文献   

5.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

6.
低等白蚁肠道共生微生物的多样性及其功能   总被引:7,自引:0,他引:7  
低等白蚁肠道里存在着复杂的微生物区系,包括真核微生物鞭毛虫和原核生物,细菌及古细菌。低等白蚁的后肠以特别膨大的囊形胃及其氢氧浓度的明显梯度分布和丰富的微生物区系为特征,是白蚁进行木质纤维素消化的主要器官。后肠内的鞭毛虫能将纤维素水解并发酵为乙酸,二氧化碳和氢,为白蚁提供营养和能源。系统发育研究表明,低等白蚁肠道共生细菌的主要类群为白蚁菌群1、螺旋体、拟杆菌,低G C mol%含量的革兰氏阳性菌和紫细菌等。而古细菌主要为甲烷短杆菌属的产甲烷菌。共生原核生物与二氧化碳的还原和氮的循环等代谢有关。但肠道共生微生物的具体功能和作用机制还有待进一步的揭示。  相似文献   

7.
Microbial colonization of marine invertebrate guts is widespread, but in general the roles that these bacteria play in the nutrition of their hosts are unknown. To examine the diversity and potential nutritional roles of hindgut microbiota in a deposit feeder, PCR-amplified 16S rRNA genes were cloned from the bacterial community attached to the hindguts of the thalassinid shrimp Neotrypaea californiensis exposed to different feeding treatments. Partial 16S rDNA sequences were analyzed for 30 clones for three shrimp per treatment for a total of 270 clones. No effects of host starvation or high-protein diets were apparent on hindgut bacterial community composition. Diversity analyses indicated high variability between bacterial communities in individual shrimp hindguts, but partial 16S rDNA sequences revealed remarkable species-level similarity (>98%) within clusters of sequences from the different shrimp hindguts, and many sequences from different shrimp hindguts were identical. Sequences belonged to three main groups of bacteria: Cytophaga-Flavobacteria-Bacteroides (CFB), proteobacteria, and gram-positives. Of the 270 sequences, 40% belonged to the alpha-proteobacteria, > or = 5% each to the gamma- and epsilon -proteobacteria, and > or =20% each to the gram-positive and CFB groups. All except one sequence are novel with < or = 95% sequence similarity to known genes. Despite weak similarity to known taxa,about 75% of the sequences were most closely related to known symbiotic and sedimentary bacteria. The bacteria in shrimp hindguts represent new species that have not yet been en-countered in other environments, and gut environments may be a rich source of the difficult-to-culture and novel components of marine bacterial diversity.  相似文献   

8.
The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.  相似文献   

9.
A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.  相似文献   

10.
Symbiotic protists play important roles in the wood digestion of lower termites. Previous studies showed that termites generally possess host-specific flagellate communities. The genus Reticulitermes is particularly interesting because its unique assemblage of gut flagellates bears evidence for transfaunation. The gut fauna of Reticulitermes species in Japan, Europe, and North America had been investigated, but data on species in China are scarce. For the first time, we analyzed the phylogeny of protists in the hindgut of five Reticulitermes species in China. A total of 22 protist phylotypes were affiliated with the family Trichonymphidae, Teranymphidae, Trichomonadidae, and Holomastigotoididae (Phylum Parabasalia), and 45 protist phylotypes were affiliated with the family Pyrsonymphidae (Phylum Preaxostyla). The protist fauna of these five Reticulitermes species is similar to those of Reticulitermes species in other geographical regions. The topology of Trichonymphidae subtree was similar to that of Reticulitermes tree. All Preaxostyla clones were affiliated with the genera Pyrsonympha and Dinenympha (Order Oxymonadida) as in the other Reticulitermes species. The results of this study not only add to the existing information on the flagellates present in other Reticulitermes species but also offer the opportunity to test the hypotheses for the coevolution of symbiotic protists with their host termites.  相似文献   

11.
Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.  相似文献   

12.
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.  相似文献   

13.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

14.

Background

Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms.

Principal Findings

Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas.

Conclusions/Significance

The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia.  相似文献   

15.
Cryptocercus punctulatus and Parasphaeria boleiriana are two distantly related xylophagous and subsocial cockroaches. Cryptocercus is related to termites. Xylophagous cockroaches and termites are excellent model organisms for studying the symbiotic relationship between the insect and their microbiota. In this study, high-throughput 454 pyrosequencing of 16S rRNA was used to investigate the diversity of metagenomic gut communities of C. punctulatus and P. boleiriana, and thereby to identify possible shifts in symbiont allegiances during cockroaches evolution. Our results revealed that the hindgut prokaryotic communities of both xylophagous cockroaches are dominated by members of four Bacteria phyla: Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Other identified phyla were Spirochaetes, Planctomycetes, candidatus Saccharibacteria (formerly TM7), and Acidobacteria, each of which represented 1–2% of the total population detected. Community similarity based on phylogenetic relatedness by unweighted UniFrac analyses indicated that the composition of the bacterial community in the two species was significantly different (P < 0.05). Phylogenetic analysis based on the characterized clusters of Bacteroidetes, Spirochaetes, and Deltaproteobacteria showed that many OTUs present in both cockroach species clustered with sequences previously described in termites and other cockroaches, but not with those from other animals or environments. These results suggest that, during their evolution, those cockroaches conserved several bacterial communities from the microbiota of a common ancestor. The ecological stability of those microbial communities may imply the important functional role for the survival of the host of providing nutrients in appropriate quantities and balance.  相似文献   

16.
ABSTRACT. Trichonympha is one of the most complex and visually striking of the hypermastigote parabasalids—a group of anaerobic flagellates found exclusively in hindguts of lower termites and the wood‐feeding cockroach Cryptocercus—but it is one of only two genera common to both groups of insects. We investigated Trichonympha of Cryptocercus using light and electron microscopy (scanning and transmission), as well as molecular phylogeny, to gain a better understanding of its morphology, diversity, and evolution. Microscopy reveals numerous new features, such as previously undetected bacterial surface symbionts, adhesion of post‐rostral flagella, and a distinctive frilled operculum. We also sequenced small subunit rRNA gene from manually isolated species, and carried out an environmental polymerase chain reaction (PCR) survey of Trichonympha diversity, all of which strongly supports monophyly of Trichonympha from Cryptocercus to the exclusion of those sampled from termites. Bayesian and distance methods support a relationship between Trichonympha species from termites and Cryptocercus, although likelihood analysis allies the latter with Eucomonymphidae. A monophyletic Trichonympha is of great interest because recent evidence supports a sister relationship between Cryptocercus and termites, suggesting Trichonympha predates the Cryptocercus‐termite divergence. The monophyly of symbiotic bacteria of Trichonympha raises the intriguing possibility of three‐way co‐speciation among bacteria, Trichonympha, and insect hosts.  相似文献   

17.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

18.
19.
Termites digest wood and other lignocellulosic substrates with the help of their intestinal microbiota. While the functions of the symbionts in the digestive process are slowly emerging, the origin of the bacteria colonizing the hindgut bioreactor is entirely unknown. Recently, our group discovered numerous representatives of bacterial lineages specific to termite guts in a closely related omnivorous cockroach, but it remains unclear whether they derive from the microbiota of a common ancestor or were independently selected by the gut environment. Here, we studied the bacterial gut microbiota in 34 species of termites and cockroaches using pyrotag analysis of the 16S rRNA genes. Although the community structures differed greatly between the major host groups, with dramatic changes in the relative abundances of particular bacterial taxa, we found that the majority of sequence reads belonged to bacterial lineages that were shared among most host species. When mapped onto the host tree, the changes in community structure coincided with major events in termite evolution, such as acquisition and loss of cellulolytic protists and the ensuing dietary diversification. UniFrac analysis of the core microbiota of termites and cockroaches and construction of phylogenetic tree of individual genus level lineages revealed a general host signal, whereas the branching order often did not match the detailed phylogeny of the host. It remains unclear whether the lineages in question have been associated with the ancestral cockroach since the early Cretaceous (cospeciation) or are diet-specific lineages that were independently acquired from the environment (host selection).  相似文献   

20.
The phylogenetic diversity of parabasalian flagellates was examined based on the sequences of small subunit ribosomal RNA genes amplified directly from the mixed population of flagellates in the hindgut of lower termites. In total, 33 representative sequences of parabasalids were recovered from eight termite species. Fluorescent-labeled oligonucleotide probes specific for certain sequences were designed and used for the in situ identification of parabasalian species by whole-cell hybridization. The hypermastigotes, Pseudotrichonympha grassii, Spirotrichonympha leidyi, and Holomastigotoides mirabile in the hindgut of Coptotermes formosanus, and Spirotrichonympha sp. and Trichonympha spp. in Hodotermopsis sjoestedti were identified. In the phylogenetic tree constructed, the sequences from the termites were dispersed within the groups of known members of parabasalids, reflecting the presence of diverse parabasalids in the hindgut of termites. There were three paraphyletic lineages of hypermastigotes represented by Pseudotrichonympha, Trichonympha, and Spirotrichonympha, in agreement with the morphology-based taxonomic groups. The analysis of the tree-root suggested that the Pseudotrichonympha group is the most probable ancient lineage of parabasalids and that the Trichonympha group is the secondly deep-branching lineage. The Spirotrichonympha group and the Trichomonadida may have emerged later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号