首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae, stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms.  相似文献   

2.
The introduction of acellular pertussis vaccines has greatly enhanced the safety profile of vaccines to prevent whooping cough. Pertussis toxin (Ptx) is one component produced by Bordetella pertussis that is contained in all of these vaccines, either in combination with other known pertussis virulence factors or as the sole pertussis component, combined with tetanus and diphtheria toxoids. A hydrogen peroxide toxoid of Ptx has been shown to be efficacious in preventing pertussis infections in a mass vaccination trial and is presently licensed in the United States and Europe (B. Trollfors, J. Taranger, T. Lagergard, L. Lind, V. Sundh, G. Zackrisson, C. U. Lowe, W. Blackwelder, and J. B. Robbins, N. Engl. J. Med. 333:1045-1050, 1995). The industrial production of Ptx can be performed through the cultivation of B. pertussis in well-defined growth media, in which the components can be well characterized and their origins can be documented. Once the bacteria are removed from the culture, Ptx can be isolated from the supernatant and purified by using the technique described by Sekura et al. (R. D. Sekura, F. Fish, C. R. Manclark, B. Meade, and Y. L. Zhang, J. Biol. Chem. 258:14647-14651, 1983). The only drawback of this procedure, which combines two affinity chromatography steps, one with Blue Sepharose and a second with matrix-bound bovine fetuin (BF), is the source and purity of the BF. Concern about vaccine preparations that may possibly risk contamination by material associated with bovine spongioform encephalopathy has continued to increase. We thus sought a replacement for the BF affinity chromatography and, more specifically, for the glycosidic moiety on BF. We describe here the identification of a seven-amino-acid peptide that mimics the glycosidic moiety on BF to which Ptx binds. Furthermore, we have constructed an affinity column containing this peptide that can be used to replace BF in Ptx purification. Finally, we used the X-ray crystallographic structure of Ptx bound to the oligosaccharide moiety of BF as a scaffold and replaced the oligosaccharide with the peptide.  相似文献   

3.
Biological membrane stabilization is essential for maintenance of cellular homeostasis, functionality and appropriate response to various stimuli. Previous studies have showed that accumulation of PKCs in the cell membrane significantly downregulates the membrane fluidity and Ca2+ influxes through the membranes in activated cells. In addition, membrane-inserted form of PKCs has been found in a variety of resting mammalian cells and tissues. This study is aimed to investigate possible role of the endogenous membrane-associated PKCs in the modulation of basal membrane fluidity. Here, we showed that interfering PKC expression by chronic activation of PKC with phorbol myristate acetate (PMA) or shRNA targeting at PKCα lowered the levels of PKCα in cytosol, peripheral membrane and integral membrane pools, while short-term activation of PKC with PMA induced accumulation of PKCα in the membrane pool accompanied by a dramatic decrease in the cytosol fraction. The lateral membrane mobility increased or decreased in accordance with the abundance alterations in the membrane-associated PKCα by these treatments. In addition, membrane permeability to divalent cations including Ca2+, Mn2+ and Ba2+ were also potentiated or abrogated along with the changes in PKC expression on the plasma membrane. Membrane stabilizer ursodeoxycholate abolished both of the enhanced lateral membrane mobility and permeability to divalent cations due to PKCα deficiency, whereas Gö6983, a PKC antagonist, or Gd3+ and 2-aminoethyoxydipheyl borne, two Ca2+ channels blockers, showed no effect, suggesting that this PKC-related regulation is independent of PKC activation or a modulation of specific divalent cation channel. Thus, these data demonstrate that the native membrane-associated PKCα is involved in the maintenance of basal membrane stabilization in resting cells.  相似文献   

4.
5.
In plasma membrane fraction isolated from eggs and embryos of sea urchin, 32P-labeled proteins were found on the fluorographs of SDS-polyacrylamide gel electrophoresis, performed after an exposure of the fraction to [adenylate-32P] nicotinamide adenine dinucleotide in the presence of cholera toxin, pertussis toxin or botulinum toxin D. The molecular weights of proteins, thus ADP-ribosylated in the presence of cholera toxin and pertussis toxin are 45 and 39 K, which correspond to Gs and Gi or Go, respectively. Protein with the molecular weight of 24 K, labeled in the presence of botulinum toxin D, corresponds to small molecular weight G-protein. The labeling intensity of 45 K protein, probably proportional to its amount, became high at the blastula stage. The labeling intensity of 39 K protein was hardly altered up to the blastula stage. The labeling intensity of 24 K protein increased after fertilization and further increase occurred at the blastula stage. At the gastrula stage, the labeling intensities of these proteins became somewhat lower than at the blastula stage. Transmembrane signaling system, in which these G-proteins are involved, is probably altered in its function during early development.  相似文献   

6.
7.
Foamy viruses naturally infect a wide range of mammals, including Old World (OWP) and New World primates (NWP), which are collectively called simian foamy viruses (SFV). While NWP species in Central and South America are highly diverse, only SFV from captive marmoset, spider monkey, and squirrel monkey have been genetically characterized and the molecular epidemiology of SFV infection in NWPs remains unknown. We tested a large collection of genomic DNA (n  = 332) comprising 14 genera of NWP species for the presence of SFV polymerase (pol) sequences using generic PCR primers. Further molecular characterization of positive samples was carried out by LTR-gag and larger pol sequence analysis. We identified novel SFVs infecting nine NWP genera. Prevalence rates varied between 14–30% in different species for which at least 10 specimens were tested. High SFV genetic diversity among NWP up to 50% in LTR-gag and 40% in pol was revealed by intragenus and intrafamilial comparisons. Two different SFV strains infecting two captive yellow-breasted capuchins did not group in species-specific lineages but rather clustered with SFVs from marmoset and spider monkeys, indicating independent cross-species transmission events. We describe the first SFV epidemiology study of NWP, and the first evidence of SFV infection in wild NWPs. We also document a wide distribution of distinct SFVs in 14 NWP genera, including two novel co-speciating SFVs in capuchins and howler monkeys, suggestive of an ancient evolutionary history in NWPs for at least 28 million years. A high SFV genetic diversity was seen among NWP, yet these viruses seem able to jump between NWP species and even genera. Our results raise concerns for the risk of zoonotic transmission of NWP SFV to humans as these primates are regularly hunted for food or kept as pets in forest regions of South America.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) in the environment has been reported frequently. However, robust detection of STEC in environmental samples remains difficult because the numbers of bacteria in samples are often below the detection threshold of the method. We developed a novel and sensitive immuno-PCR (IPCR) assay for the detection of Shiga toxin 2 (Stx2) and Stx2 variants. The assay involves immunocapture of Stx2 at the B subunit and real-time PCR amplification of a DNA marker linked to a detection antibody recognizing the Stx2 A subunit. The qualitative detection limit of the assay is 0.1 pg/ml in phosphate-buffered saline (PBS), with a quantification range of 10 to 100,000 pg/ml. The IPCR method was 10,000-fold more sensitive than an analogue conventional enzyme-linked immunosorbent assay (ELISA) in PBS. Although the sensitivity of the IPCR for detection of Stx2 was affected by environmental sample matrices of feces, feral swine colons, soil, and water from watersheds, application of the IPCR assay to 23 enriched cultures of fecal, feral swine colon, soil, and watershed samples collected from the environment revealed that the IPCR detected Stx2 in all 15 samples that were shown to be STEC positive by real-time PCR and culture methods, demonstrating a 100% sensitivity and specificity. The modification of the sandwich IPCR we have described in this study will be a sensitive and specific screening method for evaluating the occurrence of STEC in the environment.  相似文献   

9.
Small diversity libraries, composed of 4550 synthetic dodecapeptides and 8000 synthetic tripeptides, have been used to identify sequences homologous to small linear and non-linear parts of epitopes. Here we report that synthetic peptides identified through alignment of dodecapeptides and tripeptides derived from these small libraries have, in direct ELISA and/or competitive ELISA, activities similar to that of peptides covering the native epitope and similar to that of peptides derived from large expression libraries composed of 106–107 random peptides. This result was obtained with the monoclonal antibodies 6A.A6 and M2. Mab 6A.A6 binds the transmissible gastroenteritis virus (TGEV) and mAb M2 binds the FLAG®-peptide, an affinity tag. It was also found that the antibody binding activity of peptides, derived from small or large libraries, can strongly depend on the way in which the peptide is presented to the antibody, i.e. high antibody titers were obtained when these peptides were synthesized on pins or coated onto microtiter plates, whereas low IC50s were obtained with these peptides in solution. We postulate that small peptide libraries may be a powerful tool to quickly identify new peptides that can be used as sensitive markers for mAbs of interest. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear—to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.In principle, the erythropoietin receptor (EpoR) was discovered and described in red blood cell (RBC) progenitors, stimulating its proliferation and survival. Erythropoietin (Epo) is mainly synthesized in fetal liver and adult kidneys (13). Therefore, it was hypothesized that Epo act exclusively on erythroid progenitor cells. Accordingly, the target in humans for EpoR agonists drugs (such as recombinant erythropoietin [rhEpo], in general, called erythropoiesis-simulating agents) appears clear (that is, to treat anemia). However, evidence of a kaleidoscope of pleitropic actions of Epo has been provided (4,5). The Epo/EpoR axis research involved an initial journey from laboratory basic research to clinical therapeutics. However, as a consequence of clinical observations, basic research on Epo/EpoR comes back to expand its clinical therapeutic applicability.Although kidney and liver have long been considered the major sources of synthesis, Epo mRNA expression has also been detected in the brain (neurons and glial cells), lung, heart, bone marrow, spleen, hair follicles, reproductive tract and osteoblasts (617). Accordingly, EpoR was detected in other cells, such as neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells and cells of heart, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle (1827). Conversely, Sinclair et al.(28) reported data questioning the presence or function of EpoR on nonhematopoietic cells (endothelial, neuronal and cardiac cells), suggesting that further studies are needed to confirm the diversity of EpoR. Elliott et al.(29) also showed that EpoR is virtually undetectable in human renal cells and other tissues with no detectable EpoR on cell surfaces. These results have raised doubts about the preclinical basis for studies exploring pleiotropic actions of rhEpo (30).For the above-mentioned data, a return to basic research studies has become necessary, and many studies in animal models have been initiated or have already been performed. The effect of rhEpo administration on angiogenesis, myogenesis, shift in muscle fiber types and oxidative enzyme activities in skeletal muscle (4,31), cardiac muscle mitochondrial biogenesis (32), cognitive effects (31), antiapoptotic and antiinflammatory actions (3337) and plasma glucose concentrations (38) has been extensively studied. Neuro- and cardioprotection properties have been mainly described. Accordingly, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia).Unfortunately, the side effects of rhEpo are also evident. Epo is involved in regulating tumor angiogenesis (39) and probably in the survival and growth of tumor cells (25,40,41). rhEpo administration also induces serious side effects such as hypertension, polycythemia, myocardial infarction, stroke and seizures, platelet activation and increased thromboembolic risk, and immunogenicity (4246), with the most common being hypertension (47,48). A new generation of nonhematopoietic EpoR agonists drugs have hence been investigated and further developed in animals models. These compounds, namely asialoerythropoietin (asialoEpo) and carbamylated Epo (Cepo), were developed for preserving tissue-protective properties but reducing the erythropoietic activity of native Epo (49,50). These drugs will provide better outcome in ongoing clinical trials. The advantage of using nonhematopoietic Epo analogs is to avoid the stimulation of hematopoiesis and thereby the prevention of an increased hematocrit with a subsequent procoagulant status or increased blood pressure. In this regard, a new study by van Rijt et al. has shed new light on this topic (51). A new nonhematopoietic EpoR agonist analog named ARA 290 has been developed, promising cytoprotective capacities to prevent renal ischemia/reperfusion injury (51). ARA 290 is a short peptide that has shown no safety concerns in preclinical and human studies. In addition, ARA 290 has proven efficacious in cardiac disorders (52,53), neuropathic pain (54) and sarcoidosis-induced chronic neuropathic pain (55). Thus, ARA 290 is a novel nonhematopoietic EpoR agonist with promising therapeutic options in treating a wide range of pathologies and without increased risks of cardiovascular events.Overall, this new generation of EpoR agonists without the erythropoietic activity of Epo while preserving tissue-protective properties of Epo will provide better outcomes in ongoing clinical trials (49,50). Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases, such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.  相似文献   

11.
N-chlorotaurine (NCT), the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2), used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC). Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.  相似文献   

12.
Shiga toxin Stx2e is the major known agent that causes edema disease in newly weaned pigs. This severe disease is characterized by neurological disorders, hemorrhagic lesions, and frequent fatal outcomes. Stx2e consists of an enzymatically active A subunit and five B subunits that bind to a specific glycolipid receptor on host cells. It is evident that antibodies binding to the A subunit or the B subunits of Shiga toxin variants may have the capability to inhibit their cytotoxicity. Here, we report the discovery and characterization of a VHH single domain antibody (nanobody) isolated from a llama phage display library that confers potent neutralizing capacity against Stx2e toxin. We further present the crystal structure of the complex formed between the nanobody (NbStx2e1) and the Stx2e toxoid, determined at 2.8 Å resolution. Structural analysis revealed that for each B subunit of Stx2e, one NbStx2e1 is interacting in a head-to-head orientation and directly competing with the glycolipid receptor binding site on the surface of the B subunit. The neutralizing NbStx2e1 can in the future be used to prevent or treat edema disease.  相似文献   

13.
We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.  相似文献   

14.
Singapore grouper iridovirus (SGIV) is one of the major causative agents of fish diseases and has caused significant economic losses in the aquaculture industry. There is currently no commercial vaccine or effective antiviral treatment against SGIV infection. Annually, an increasing number of small molecule compounds from various sources have been produced, and many are proved to be potential inhibitors against viruses. Here, a high-throughput in vitro cell viability-based screening assay was developed to identify antiviral compounds against SGIV using the luminescent-based CellTiter-Glo reagent in cultured grouper spleen cells by quantificational measurement of the cytopathic effects induced by SGIV infection. This assay was utilized to screen for potential SGIV inhibitors from five customized compounds which had been reported to be capable of inhibiting other viruses and 30 compounds isolated from various marine organisms, and three of them [ribavirin, harringtonine, and 2-hydroxytetradecanoic acid (2-HOM)] were identified to be effective on inhibiting SGIV infection, which was further confirmed with droplet digital PCR (ddPCR). In addition, the ddPCR results revealed that ribavirin and 2-HOM inhibited SGIV replication and entry in a dose-dependent manner, and harringtonine could reduce SGIV replication rather than entry at the working concentration without significant toxicity. These findings provided an easy and reliable cell viability-based screening assay to identify compounds with anti-SGIV effect and a way of studying the anti-SGIV mechanism of compounds.  相似文献   

15.
16.
Trypanosoma brucei is the causative agent of both a veterinary wasting disease and human African trypanosomiasis, or sleeping sickness. The cell membrane of the developmental stage found within the mammalian host, the bloodstream form (BSF), is highly dynamic, exhibiting rapid rates of endocytosis and lateral flow of glycosylphosphatidylinositol-anchored proteins. Here, we show that the cell membrane of these organisms is a target for killing by small hydrophobic peptides that increase the rigidity of lipid bilayers. Specifically, we have derived trypanocidal peptides that are based upon the hydrophobic N-terminal signal sequences of human apolipoproteins. These peptides selectively partitioned into the plasma membrane of BSF trypanosomes, resulting in an increase in the rigidity of the bilayer, dramatic changes in cell motility, and subsequent cell death. No killing of the developmental stage found within the insect midgut, the procyclic form, was observed. Additionally, the peptides exhibited no toxicity toward mammalian cell lines and did not induce hemolysis. Studies with model liposomes indicated that bilayer fluidity dictates the susceptibility of membranes to manipulation by hydrophobic peptides. We suggest that the composition of the BSF trypanosome cell membrane confers a high degree of fluidity and unique susceptibility to killing by hydrophobic peptides and is therefore a target for the development of trypanocidal drugs.  相似文献   

17.
The image-mean square displacement technique applies the calculation of the mean square displacement commonly used in single-molecule tracking to images without resolving single particles. The image-mean square displacement plot obtained is similar to the mean square displacement plot obtained using the single-particle tracking technique. This plot is then used to reconstruct the protein diffusion law and to identify whether the labeled molecules are undergoing pure isotropic, restricted, corralled, transiently confined, or directed diffusion. In our study total internal reflection fluorescence microscopy images were taken of Cholera toxin subunit B (CtxB) membrane-labeled NIH 3T3 mouse fibroblasts and MDA 231 MB cells. We found a population of CTxB undergoing purely isotropic diffusion and one displaying restricted diffusion with corral sizes ranging from 150 to ∼1800 nm. We show that the diffusion rate of CTxB bound to GM1 is independent of the size of the confinement, suggesting that the mechanism of confinement is different from the mechanism controlling the diffusion rate of CtxB. We highlight the potential effect of continuous illumination on the diffusion mode of CTxB. We also show that aggregation of CTxB/GM1 in large complexes occurs and that these aggregates tend to have slower diffusion rates.  相似文献   

18.
The activity patterns of most terrestrial animals are regarded as being primarily influenced by light, although other factors, such as sexual cycle and climatic conditions, can modify the underlying patterns. However, most activity studies have been limited to a single study area, which in turn limit the variability of light conditions and other factors. Here we considered a range of variables that might potentially influence the activity of a large carnivore, the Eurasian lynx, in a network of studies conducted with identical methodology in different areas spanning latitudes from 49°7′N in central Europe to 70°00′N in northern Scandinavia. The variables considered both light conditions, ranging from a day with a complete day–night cycle to polar night and polar day, as well as individual traits of the animals. We analysed activity data of 38 individual free-ranging lynx equipped with GPS-collars with acceleration sensors, covering more than 11,000 lynx days. Mixed linear additive models revealed that the lynx activity level was not influenced by the daily daylight duration and the activity pattern was bimodal, even during polar night and polar day. The duration of the active phase of the activity cycle varied with the widening and narrowing of the photoperiod. Activity varied significantly with moonlight. Among adults, males were more active than females, and subadult lynx were more active than adults. In polar regions, the amplitude of the lynx daily activity pattern was low, likely as a result of the polycyclic activity pattern of their main prey, reindeer. At lower latitudes, the basic lynx activity pattern peaked during twilight, corresponding to the crepuscular activity pattern of the main prey, roe deer. Our results indicated that the basic activity of lynx is independent of light conditions, but is modified by both individual traits and the activity pattern of the locally most important prey.  相似文献   

19.
Global environmental change and increasing human population emphasize the urgent need for higher yielding and better adapted crop plants. One strategy to achieve this aim is to exploit the wealth of so called landraces of crop species, representing diverse traditional domesticated populations of locally adapted genotypes. In this study, we investigated a comprehensive set of 1485 spring barley landraces (Lrc1485) adapted to a wide range of climates, which were selected from one of the largest genebanks worldwide. The landraces originated from 5° to 62.5° N and 16° to 71° E. The whole collection was genotyped using 42 SSR markers to assess the genetic diversity and population structure. With an average allelic richness of 5.74 and 372 alleles, Lrc1485 harbours considerably more genetic diversity than the most polymorphic current GWAS panel for barley. Ten major clusters defined most of the population structure based on geographical origin, row type of the ear and caryopsis type – and were assigned to specific climate zones. The legacy core reference set Lrc648 established in this study will provide a long-lasting resource and a very valuable tool for the scientific community. Lrc648 is best suited for multi-environmental field testing to identify candidate genes underlying quantitative traits but also for allele mining approaches.  相似文献   

20.
P-glycoprotein is capable of effluxing a broad range of cytosolic and membrane penetrating xenobiotic substrates, thus leading to multi-drug resistance and posing a threat for the therapeutic treatment of several diseases, including cancer and central nervous disorders. Herein, a virtual screening campaign followed by experimental validation in Caco-2, MDKCII, and MDKCII mdr1 transfected cell lines has been conducted for the identification of novel phospholipids with P-gp transportation inhibitory activity. Phosphatidylinositol-(1,2-dioctanoyl)-sodium salt (8∶0 PI) was found to significantly inhibit transmembrane P-gp transportation in vitro in a reproducible-, cell line-, and substrate-independent manner. Further tests are needed to determine whether this and other phosphatidylinositols could be co-administered with oral drugs to successfully increase their bioavailability. Moreover, as phosphatidylinositols and phosphoinositides are present in the human diet and are known to play an important role in signal transduction and cell motility, our finding could be of substantial interest for nutrition science as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号