共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Prostaglandin (PG)E2 is a lipid mediator implicated in inflammatory diseases and in the regulation of lipolysis and adipocyte differentiation. This work was, thus, undertaken to study the regulation of the various PGE2 synthases (PGESs) in obesity. Research Methods and Procedures: C57Bl/6 mice were subjected to a high‐fat or regular diet for 12 weeks. The levels of PGE2 in white adipose tissue (WAT) of lean and obese mice were quantified by liquid chromatography‐mass spectrometry, and the change in expression of the three major PGES caused by diet‐induced obesity was characterized by Western blotting. Human preadipocytes and 3T3‐L1 cells were used to assess the expression of microsomal prostaglandin E2 synthase‐1 (mPGES‐1) during adipogenesis. Results: mPGES‐1, mPGES‐2, and cytosolic PGES proteins were all detected in WAT of lean animals. mPGES‐1 was expressed at higher levels in WAT than in any other tissues examined and was more abundant (3‐ to 4‐fold) in epididymal (visceral) compared with inguinal (subcutaneous) WAT. Expression of mPGES‐1 was also detected in undifferentiated and differentiated 3T3‐L1 cells and in human primary subcutaneous preadipocytes at all stages of adipogenesis. The mPGES‐1 protein was substantially down‐regulated in epididymal and inguinal WAT of obese mice, whereas mPGES‐2 and cytosolic PGES remained relatively stable. Concordantly, the PGE2 levels in obese inguinal WAT were significantly lower than those of lean animals. Discussion: These data suggest that mPGES‐1 is the major form of PGESs contributing to the synthesis of PGE2 in WAT and that its down‐regulation might be involved in the alterations of lipolysis and adipogenesis associated with obesity. 相似文献
2.
Spinella F Rosanò L Di Castro V Natali PG Bagnato A 《The Journal of biological chemistry》2004,279(45):46700-46705
Cyclooxygenase (COX)-1- and COX-2-derived prostaglandins are implicated in the development and progression of several malignancies. We have recently demonstrated that treatment of ovarian carcinoma cells with endothelin-1 (ET-1) induces expression of both COX-1 and COX-2, which contributes to vascular endothelial growth factor (VEGF) production. In this study, we show that in HEY and OVCA 433 ovarian carcinoma cells, ET-1, through the binding with ETA receptor (ETAR), induces prostaglandin E2 (PGE2) production, as the more represented PG types, and increases the expression of PGE2 receptor type 2 (EP2) and type 4 (EP4). The use of pharmacological EP agonists and antagonists indicates that ET-1 and PGE2 stimulate VEGF production principally through EP2 and EP4 receptors. At the mechanistic level, we prove that the induction of PGE2 and VEGF by ET-1 involves Src-mediated epidermal growth factor receptor transactivation. Finally, we demonstrate that ETAR-mediated activation of PGE2-dependent signaling participates in the regulation of the invasive behavior of ovarian carcinoma cells by activating tumor-associated matrix metalloproteinase. These results implicate EP2 and EP4 receptors in the induction of VEGF expression and cell invasiveness by ET-1 and provide a mechanism by which ETAR/ET-1 can promote and interact with PGE2-dependent machinery to amplify its proangiogenic and invasive phenotype in ovarian carcinoma cells. Pharmacological blockade of ETAR can therefore represent an additional strategy to control PGE2 signaling, which has been associated with ovarian carcinoma progression. 相似文献
3.
4.
Activation of chemokine receptor CXCR4 in malignant glioma cells promotes the production of vascular endothelial growth factor 总被引:15,自引:0,他引:15
Yang SX Chen JH Jiang XF Jiang XF Wang QL Chen ZQ Zhao W Feng YH Xin R Shi JQ Bian XW 《Biochemical and biophysical research communications》2005,335(2):523-528
Numerous studies have showed that chemokine receptors, such as CXCR4, contribute to the growth and metastasis of a variety of malignant tumors. In this study, we investigated the role of CXCR4 in the production of angiogenic factor, vascular endothelial growth factor (VEGF), in various human glioma cells from astrocytic origin. The expression of CXCR4 mRNA and protein in three glioma cell lines, U87-MG, SHG-44, and CHG-5, was determined by RT-PCR and immunocytochemistry, respectively. The malignancies of three gliomas were evaluated by expression of glial fibrillary acidic protein and vimentin, the differentiation markers of astrocytic cells. The role of functional CXCR4 in tumor cell migration was studied with chemotaxis assay. Ca2+ mobilization and VEGF production were measured in the cells after stimulation with CXCR4 ligand, SDF1beta. The results showed that the levels of functional CXCR4 expression at both mRNA and protein levels by several human glioma cell lines were correlated with the degree of differentiation of the tumor cells. Activation of CXCR4 induced glioma cell chemotaxis and could trigger the increase of intracellular [Ca2+]i. Such an activation could result in the increased production of VEGF by the stimulated tumor cells. Our results suggest that CXCR4 may contribute to the high level of VEGF produced by malignant glioma cells and thus constitute a therapeutic target for antiangiogenesis strategy. 相似文献
5.
Masaki Inada Morichika Takita Satoshi Yokoyama Kenta Watanabe Tsukasa Tominari Chiho Matsumoto Michiko Hirata Yoshiro Maru Takayuki Maruyama Yukihiko Sugimoto Shuh Narumiya Satoshi Uematsu Shizuo Akira Gillian Murphy Hideaki Nagase Chisato Miyaura 《The Journal of biological chemistry》2015,290(50):29781-29793
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. 相似文献
6.
Jennilee M. Davidson Christine T. Wong Hongyan Li Dorota A. Crawford 《Biochemistry and Biophysics Reports》2016
Prostaglandin E2 (PGE2) is a lipid mediator released from the phospholipid membranes that mediates important physiological functions in the nervous system via activation of four EP receptors (EP1-4). There is growing evidence for the important role of the PGE2/EP4 signaling in the nervous system. Previous studies in our lab show that the expression of the EP4 receptor is significantly higher during the neurogenesis period in the mouse. We also showed that in mouse neuroblastoma cells, the PGE2/EP4 receptor signaling pathway plays a role in regulation of intracellular calcium via a phosphoinositide 3-kinase (PI3K)-dependent mechanism. Recent research indicates that the functional importance of the EP4 receptor depends on its subcellular localization. PGE2-induced EP4 externalization to the plasma membrane of primary sensory neurons has been shown to play a role in the pain pathway. In the present study, we detected a novel PGE2–dependent subcellular trafficking of the EP4 receptor in neuroectodermal (NE-4C) stem cells and differentiated NE-4C neuronal cells. We show that PGE2 induces EP4 externalization from the Golgi apparatus to the plasma membrane in NE-4C stem cells. We also show that the EP4 receptors translocate to growth cones of differentiating NE-4C neuronal cells and that a higher level of PGE2 enhances its growth cone localization. These results demonstrate that the EP4 receptor relocation to the plasma membrane and growth cones in NE-4C cells is PGE2 dependent. Thus, the functional role of the PGE2/EP4 pathway in the developing nervous system may depend on the subcellular localization of the EP4 receptor. 相似文献
7.
Lipopolysaccharide enhances the production of nicotine-induced prostaglandin E2 by an increase in cyclooxygenase-2 expression in osteoblasts 总被引:5,自引:0,他引:5
Shoji M Tanabe N Mitsui N Suzuki N Takeichi O Katono T Morozumi A Maeno M 《Acta biochimica et biophysica Sinica》2007,39(3):163-172
Previous studies have indicated that lipopolysaccharide(LPS)from Gram-negative bacteria inplaque induces the release of prostaglandin E_2(PGE_2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase(ALPase)activity,PGE_2 production,and the expression of cyclooxygenase(COX-1,COX-2),PGE_2 receptors Ep1-4,and macrophage colonystimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10~(-3)M nicotinein the presence of 0,1,or 10μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured withnicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE_2production significantly increased in the former and increased further in the latter.By itself,nicotine did notaffect expression of COX-1,COX-2,any of the PGE_2 receptors,or M-CSF,but when both nicotine and LPSwere present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of10~(-4)M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE_2 production,and M-CSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.Theseresults suggest that LPS enhances the production of nicotine-induced PGE_2 by an increase in COX-2 expres-sion in osteoblasts,that nicotine-LPS-induced PGE_2 interacts with the osteoblast Ep4 receptor primarily inautocrine or paracrine mode,and that the nicotine-LPS-induced PGE_2 then decreases ALPase activity andincreases M-CSF expression. 相似文献
8.
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been shown to play a role in prostate cancer. In PGE2-treated LNCaP cells, up-regulation of HIF-1α requires the internalization of PGE2, which is in sharp contrast with the generally accepted view that PGE2 acts through EP receptors located at the cell membrane. Here we aimed to study in androgen-independent PC3 cells the role of intracellular PGE2 in several events linked to prostate cancer progression. To this end, we used bromocresol green, an inhibitor of prostaglandin uptake that blocked the immediate rise in intracellular immunoreactive PGE2 following treatment with 16,16-dimethyl-PGE2. Bromocresol green prevented the stimulatory effect of 16,16-dimethyl-PGE on cell proliferation, adhesion, migration and invasion and on HIF-1α expression and activity, the latter assessed as the HIF-dependent activation of (i) a hypoxia response element-luciferase plasmid construct, (ii) production of angiogenic factor vascular endothelial growth factor-A and (iii) in vitro angiogenesis. The basal phenotype of PC3 cells was also affected by bromocresol green, that substantially lowered expression of HIF-1α, production of vascular endothelial growth factor-A and cell proliferation. These results, and the fact that we found functional intracellular EP receptors in PC3 cells, suggest that PGE2-dependent intracrine mechanisms play a role in prostate cancer Therefore, inhibition of the prostaglandin uptake transporter might be a novel therapeutic approach for the treatment of prostate cancer. 相似文献
9.
Chandrasekharan S Foley NA Jania L Clark P Audoly LP Koller BH 《Journal of lipid research》2005,46(12):2636-2648
The mammary gland, like most tissues, produces measurable amounts of prostaglandin E2 (PGE2), a metabolite of arachidonic acid produced by sequential actions of two cyclooxygenases (COX-1 and COX-2) and three terminal PGE synthases: microsomal prostaglandin E2 synthase-1 (mPGES1), mPGES2, and cytosolic prostaglandin E2 synthase (cPGES). High PGE2 levels and COX-2 overexpression are frequently detected in mammary tumors and cell lines. However, less is known about PGE2 metabolic enzymes in the context of normal mammary development. Additionally, the primary COX partnerships of terminal PGE synthases and their contribution to normal mammary PGE2 biosynthesis are poorly understood. We demonstrate that expression of COX-1, generally considered constitutive, increases dramatically with lactogenic differentiation of the murine mammary gland. Concordantly, total PGE2 levels increase throughout mammary development, with highest levels measured in lactating tissue and breast milk. In contrast, COX-2 expression is extremely low, with only a modest increase detected during mammary involution. Expression of the G(s)-coupled PGE2 receptors, EP2 and EP4, is also temporally regulated, with highest levels detected at stages of maximal proliferation. PGE2 production is dependent on COX-1, as PGE2 levels are nearly undetectable in COX-1-deficient mammary glands. Interestingly, PGE2 levels are similarly reduced in lactating glands of mPGES1-deficient mice, indicating that PGE2 biosynthesis results from the coordinated activity of COX-1 and mPGES1. We thus provide evidence for the first time of functional coupling between COX-1 and mPGES1 in the murine mammary gland in vivo. 相似文献
10.
Alaa Kashmiry Rothwelle Tate Giuliana Rotondo Jillian Davidson Dino Rotondo 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(10):1297-1304
Prostaglandin E2 (PGE2) is responsible for inflammatory symptoms. However, PGE2 also suppresses pro-inflammatory cytokine production. There are at least 4 subtypes of PGE2 receptors, EP1–EP4, but it is unclear which of these specifically control cytokine production. The aim of this study was to determine which of the different receptors, EP1R–EP4R modulate production of tumor necrosis factor-α (TNF-α) in human monocytic cells.Human blood, or the human monocytic cell line THP-1 were stimulated with LPS. The actions of PGE2, alongside selective agonists of EP1–EP4 receptors, were assessed on LPS-induced TNF-α, IL-1β and IL-10 release. The expression profiles of EP2R and EP4R in monocytes and THP-1 cells were characterised by RT-qPCR. In addition, the production of cytokines was evaluated following knockdown of the receptors using siRNA and over-expression of the receptors by transfection with constructs.PGE2 and also EP2 and EP4 agonists (but not EP1 or EP3 agonists) suppressed TNF-α production in blood and THP-1 cells. LPS also up regulated expression of EP2R and EP4R but not EP1 or EP3. siRNA for either EP2R or EP4R reversed the suppressive actions of PGE2 on cytokine production and overexpression of EP2R and EP4R enhanced the suppressive actions of PGE2.This indicates that PGE2 suppression of TNF-α by human monocytic cells occurs via EP2R and EP4R expression. However EP4Rs also control their own expression and that of EP2 whereas the EP2R does not affect EP4R expression. This implies that EP4 receptors have an important master role in controlling inflammatory responses. 相似文献
11.
Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells 总被引:4,自引:0,他引:4
Exposure to pathogens induces dendritic cells to release inflammatory cytokines and chemokines. The inflammatory response is controlled by endogenous agents such as anti-inflammatory cytokines, glucocorticoids, anti-inflammatory neuropeptides, and lipid mediators. This study is the first report on the inhibition by prostaglandin E2 (PGE2) of TNF release from bone marrow-derived dendritic cells stimulated with lipopolysaccharide (LPS), a TLR4 ligand, or peptidoglycan, a TLR2 ligand. The inhibition of TNF occurs at both mRNA and protein level. The inhibitory effect of PGE2 is mediated by the EP2 and EP4 receptors, and involves both PKA signaling and mediation by DC-derived IL-10. Intraperitoneal administration of PGE2 together with LPS results in a reduction in serum TNF and intracellular TNF in peritoneal exudate cells, compared to LPS alone. In addition, administration of PGE2 in vivo reduces the numbers of CD11c+ DCc that accumulate in the peritoneal cavity in response to LPS. The various implications of the PGE2-induced reduction in TNF are discussed. 相似文献
12.
Xiaoqian Hu Vincenza Cifarelli Shishuo Sun Ondrej Kuda Nada A. Abumrad Xiong Su 《Journal of lipid research》2016,57(4):663-673
Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2), reflecting cytosolic phospholipase A2 α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2 potently induced macrophage migration while different FFAs and PGD2 had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2 levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2 with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis. 相似文献
13.
14.
Zhongchi Li Kang Xu Sen Zhao Yannan Guo Huiling Chen Jianquan Ni Qingfei Liu Zhao Wang 《Aging cell》2021,20(1)
Spermatogenesis‐associated protein 4 (SPATA4) is conserved across multiple species. However, the function of this gene remains largely unknown. In this study, we generated Spata4 transgenic mice to explore tissue‐specific function of SPATA4. Spata4 overexpression mice displayed increased subcutaneous fat tissue compared with wild‐type littermates at an old age, while this difference was not observed in younger mice. Aging‐induced ectopic fat distribution, inflammation, and insulin resistance were also significantly attenuated by SPATA4. In vitro, SPATA4 promoted preadipocyte differentiation through activation of the ERK1/2 and C/EBPβ pathway and increased the expression of adipokines. These data suggest SPATA4 can regulate lipid accumulation in a tissue‐specific manner and improve aging‐induced dysmetabolic syndromes. Clarifying the mechanism of SPATA4 functioning in lipid metabolism might provide novel therapeutic targets for disease interventions. 相似文献
15.
We investigated the involvement of prostaglandin E (PGE) receptor subtype EP3 in the regulatory mechanism of duodenal HCO3− secretion in rats. A proximal duodenal loop or a chambered stomach was perfused with saline, and HCO3− secretion was measured using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved through 10 min of exposure to 10 mM HCl in the duodenum or 100 mM HCl in the stomach. Various EP agonists or the EP4 antagonist were given i.v., while the EP1 or EP3 antagonist was given s.c. or i.d., respectively. Sulprostone (EP1/EP3 agonists) stimulated duodenal HCO3− secretion in a dose-dependent manner, and this response was inhibited by AE5-599 (EP3 antagonist) but not AE3-208 (EP4 antagonist). AE1-329 (EP4 agonist) also increased duodenal HCO3− secretion, and this action was inhibited by AE3-208 but not AE5-599. The response to PGE2 or acidification in the duodenum was partially attenuated by AE5-599 or AE3-208 alone but completely abolished by the combined administration. Duodenal damage caused by mucosal perfusion with 150 mM HCl for 4 h was worsened by pretreatment with AE5-599 and AE3-208 as well as indomethacin and further aggravated by co-administration of these antagonists. Neither the EP3 nor EP4 antagonist had any effect on the gastric response induced by PGE2 or acidification. These results clearly demonstrate the involvement of EP3 receptors, in addition to EP4 receptors, in the regulation of duodenal HCO3− secretion as well as the maintenance of the mucosal integrity of the duodenum against acid injury. 相似文献
16.
Bradley S. Fleenor Jason S. Eng Amy L. Sindler Bryant T. Pham Jackson D. Kloor Douglas R. Seals 《Aging cell》2014,13(3):576-578
We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4–6 months), old (26–28 months), and old treated with 4‐Hydroxy‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s‐1) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P < 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P < 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro‐inflammatory proteins in PVAT‐conditioned media (P < 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s‐1) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P < 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue‐cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P < 0.05). In addition, PVAT‐derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age‐related superoxide production and pro‐inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness. 相似文献
17.
Mark P. Healy Amanda C. Allan Kristin Bailey Andy Billinton Iain P. Chessell Nicholas M. Clayton Gerard M.P. Giblin Melanie A. Kay Tarik Khaznadar Anton D. Michel Alan Naylor Helen Price David J. Spalding David A. Stevens Martin E. Swarbrick Alexander W. Wilson 《Bioorganic & medicinal chemistry letters》2018,28(10):1892-1896
A novel series of EP4 agonists and antagonists have been identified, and then used to validate their potential in the treatment of inflammatory pain. This paper describes these novel ligands and their activity within a number of pre-clinical models of pain, ultimately leading to the identification of the EP4 partial agonist GSK726701A. 相似文献
18.
Chemokines and their receptors participate in the development of cancers by enhancing tumor cell proliferation, angiogenesis, invasion, metastasis and penetration of tumor immune cells. It remains unclear whether CXC chemokine ligand 4 (CXCL4)/CXC chemokine receptor 3-B (CXCR3-B) can be used as an independent molecular marker for establishing prognosis for breast cancer patients. We evaluated CXCL4 and CXCR3-B expression in 114 breast cancer tissues and 30 matched noncancerous tissues using immunohistochemistry and western blot, and determined the correlation between their expression and clinicopathologic findings. We observed that breast cancer tissues express CXCL4 strongly and CXCR3-B weakly compared to noncancerous tissues. Strong CXCL4 expression was detected in 94.7% and weak CXCR3-B expression was detected in 78.9% of the tissues. Therefore, CXCL4/CXCR3-B might play a crucial role in breast cancer progression. We found no significant correlation between CXCL4 and age, tumor stage, tumor grade or TNM stage. CXCR3-B was associated significantly with tumor grade. Moreover, the Chi-square test of association showed that the expression of CXCL4/CXCR3-B might be an independent prognostic marker for breast cancer. Therefore, we suggest that CXCR3-B is an indicator of poor prognosis and may also be a chemotherapeutic target. 相似文献
19.
Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis 总被引:1,自引:0,他引:1
Despite the magnitude of the obesity epidemic, the mechanisms that contribute to increases in fat mass and to differences in fat depots are still poorly understood. Prostanoids have been proposed as potent adipogenic hormones, e.g. metabolites of prostaglandin J2 (PGJ2) bind and activate PPARγ. We hypothesize that an altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. We characterized adipose depot-specific expression of enzymes in PGJ2 synthesis, prostaglandin transporter and PPARγ isoforms. Paired omental and subcutaneous adipose tissue samples were obtained from 26 women undergoing elective abdominal surgery and gene expression examined in whole tissue and cultured preadipocytes using an Affymetrix cDNA microarray technique and validated with quantitative real-time PCR. All enzymes involved in prostaglandin synthesis were expressed in both adipose tissues. Expression of prostaglandin synthase-1 (PGHS1), prostaglandin D synthase (PTGDS), human prostaglandin transporter (hPGT) and PPARγ2 was higher in OM adipose tissue compared to SC, whereas 17β-hydroxysteroid dehydrogenase 5 (AKR1C3) showed predominance in SC adipose tissue. In SC adipose tissue, PGHS1 mRNA expression increased with BMI. The differential, depot-specific expression of key enzymes involved in transport, synthesis and metabolism of prostaglandins may have an important impact upon fat cell biology and may help to explain some of the observed depot-specific differences. In addition, the positive correlation between PGHS1 and BMI offers the novel hypothesis that the regulation of PG synthesis may have a role in determining fat distribution in human obesity. 相似文献
20.
Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells 总被引:19,自引:0,他引:19
Antigen-specific immune responses in the skin are initiated by antigen uptake into Langerhans cells and the subsequent migration of these cells to draining lymph nodes. Although prostaglandin E2 (PGE2) is produced substantially in skin exposed to antigen, its role remains unclear. Here we show that although Langerhans cells express all four PGE receptor subtypes, their migration to regional lymph nodes was decreased only in EP4-deficient (Ptger4-/-) mice and in wild-type mice treated with an EP4 antagonist. An EP4 agonist promoted the migration of Langerhans cells, increased their expression of costimulatory molecules and enhanced their ability to stimulate T cells in the mixed lymphocyte reaction in vitro. Contact hypersensitivity to antigen was impaired in Ptger4-/- mice and in wild-type mice treated with the EP4 antagonist during sensitization. PGE2-EP4 signaling thus facilitates initiation of skin immune responses by promoting the migration and maturation of Langerhans cells. 相似文献