首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The research field of animal and plant symbioses is advancing from studying interactions between two species to whole communities of associates. High-throughput sequencing of microbial communities supports multiplexed sampling for statistically robust tests of hypotheses about symbiotic associations. We focus on ambrosia beetles, the increasingly damaging insects primarily associated with fungal symbionts, which have also been reported to support bacteria. To analyze the diversity, composition, and specificity of the beetles' prokaryotic associates, we combine global sampling, insect anatomy, 454 sequencing of bacterial rDNA, and multivariate statistics to analyze prokaryotic communities in ambrosia beetle mycangia, organs mostly known for transporting symbiotic fungi. We analyze six beetle species that represent three types of mycangia and include several globally distributed species, some with major economic importance (Dendroctonus frontalis, Xyleborus affinis, Xyleborus bispinatus-ferrugineus, Xyleborus glabratus, Xylosandrus crassiusculus, and Xylosandrus germanus). Ninety-six beetle mycangia yielded 1,546 bacterial phylotypes. Several phylotypes appear to form the core microbiome of the mycangium. Three Mycoplasma (originally thought restricted to vertebrates), two Burkholderiales, and two Pseudomonadales are repeatedly present worldwide in multiple beetle species. However, no bacterial phylotypes were universally present, suggesting that ambrosia beetles are not obligately dependent on bacterial symbionts. The composition of bacterial communities is structured by the host beetle species more than by the locality of origin, which suggests that more bacteria are vertically transmitted than acquired from the environment. The invasive X. glabratus and the globally distributed X. crassiusculus have unique sets of bacteria, different from species native to North America. We conclude that the mycangium hosts in multiple vertically transmitted bacteria such as Mycoplasma, most of which are likely facultative commensals or parasites.  相似文献   

2.
Insects that depend on microbial mutualists evolved a variety of organs to transport the microsymbionts while dispersing. The ontogeny and variability of such organs is rarely studied, and the microsymbiont*s effects on the animal tissue development remain unknown in most cases. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae or Platypodinae) and their mutualistic fungi are an ideal system to study the animalfungus interactions. While the interspecific diversity of their fungus transport organ一 mycangia—is well-known, their developmental plasticity has been poorly described. To determine the ontogeny of the mycangium and the influence of the symbiotic fungus on the tissue development, we dissected by hand or scanned with micro-CT the mycangia in various developmental stages in five Xylosandrus ambrosia beetle species that possess a large, mesonotal mycangium: Xylosandrus amputatus. Xylosandrus compactus, Xylosandrus crassiusculus, Xylosandrus discolor, and Xylosandrus germanus. We processed 181 beetle samples from the United States and China. All five species displayed three stages of the mycangium development:(1) young teneral adults had an empty, deflated and cryptic mycangium without fungal mass;(2) in fully mature adults during dispersal, the promesonotal membrane was inflated, and most individuals developed a mycangium mostly filled with the symbiont, though size and symmetry varied;and (3) after successful establishment of their new galleries, most females discharged the bulk of the fun gal inoculum and deflated the mycangium. Experimental aposymbiotic individuals demonstrated that the pronotal membrane invaginated independently of the presence of the fungus, but the fungus was required for inflation. Mycangia are more dynamic than previously thought, and their morphological changes correspond to the phases of the symbiosis. Importantly, studies of the fungal symbionts or plant pathogen transmission in ambrosia beetles need to consider which developmental stage to sample. We provide illustrations of the different stages, including microphotography of dissections and micro-CT scans.  相似文献   

3.
Ambrosia beetles and fungi represent an interesting and economically important symbiosis, but the vast majority of ambrosia fungi remain unexplored, hindering research, management of pathogens, and mitigation of invasive species. Beetles in the subtribe Premnobiini are one example of an entire beetle lineage whose fungal symbionts have never been studied. Here, we identify one dominant fungal symbiont of Premnobius cavipennis by using fungus culturing, community sequencing, microtome sectioning and micro-CT scanning of mycangia. Phylogenetic analyses of combined 18S and 28S rDNA and β-tubulin sequences revealed a highly divergent fungal lineage within Ophiostomatales, Afroraffaelea ambrosiae gen. nov. et sp. nov. The newly described fungal lineage represents another origin of the symbiosis within the Kingdom Fungi, adding to our understanding of the geographic ancestry of ambrosia fungi. P. cavipennis possesses pharyngeal mycangia which appear restrictive in fungus selection. This ambrosia beetle-fungus association has remained stable even after invasions into non-native regions.  相似文献   

4.
Ambrosia beetles subsist on fungal symbionts that they carry to, and cultivate in, their natal galleries. These symbionts are usually saprobes, but some are phytopathogens. Very few ambrosial symbioses have been studied closely, and little is known about roles that phytopathogenic symbionts play in the life cycles of these beetles. One of the latter symbionts, Raffaelea lauricola, causes laurel wilt of avocado, Persea americana, but its original ambrosia beetle partner, Xyleborus glabratus, plays an uncertain role in this pathosystem. We examined the response of a putative, alternative vector of R. lauricola, Xyleborus bispinatus, to artificial diets of R. lauricola and other ambrosia fungi. Newly eclosed, unfertilized females of X. bispinatus were reared in no-choice assays on one of five different symbionts or no symbiont. Xyleborus bispinatus developed successfully on R. lauricola, R. arxii, R. subalba and R. subfusca, all of which had been previously recovered from field-collected females of X. bispinatus. However, no development was observed in the absence of a symbiont or on another symbiont, Ambrosiella roeperi, recovered from another ambrosia beetle, Xylosandrus crassiusculus. In the no-choice assays, mycangia of foundress females of X. bispinatus harbored significant colony-forming units of, and natal galleries that they produced were colonized with, the respective Raffaelea symbionts; with each of these fungi, reproduction, fecundity and survival of the beetle were positively impacted. However, no fungus was recovered from, and reproduction did not occur on, the A. roeperi and no symbiont diets. These results highlight the flexible nature of the ambrosial symbiosis, which for X. bispinatus includes a fungus with which it has no evolutionary history. Although the “primary” symbiont of the neotropical X. bispinatus is unclear, it is not the Asian R. lauricola.  相似文献   

5.
Abstract  Ambrosia beetles have an obligate relationship with the ambrosia fungi that they feed on. This requires that the beetles have means to transport those fungi when they colonise new hosts. Some ambrosia beetles have special structures called mycangia to transport fungi in. This paper describes the mycangia of the ambrosia beetle Austroplatypus incompertus and illustrates how the mycangical hairs are probably used by the beetle to acquire fungal spores for transport. The mycangia and probable method of fungal acquisition of this species are compared with those of other ambrosia beetles.  相似文献   

6.
The dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle,Xylosandrus mutilatus, were studied in relation to its life history using both isolation experiments and scanning electron microscopy (SEM). In the galleries,Ambrosiella sp. was predominant during the larval stages but its relative dominance gradually decreased during the development of the larvae. In contrast, yeasts (mainlyCandida sp.) andPaecilomyces sp. dominated continuously in the galleries after eclosion.Ambrosiella sp. was consistently stored in the mycangia in all adult stages, except in the teneral and overwintering adults when the other fungi were dominant. No fungal spores occurred in the mycangia of the adult beetles reared under aseptic conditions from the pupal stage, while onlyAmbrosiella sp. was stored in those reared from the teneral-adult stage. These results suggest that: (i) Xmutilatus is associated with at least three fungal species, among whichAmbrosiella sp. is the most essential food resource for development of the broods; (ii) immediately after eclosion, new female adults may take at least four associated fungal species, with no or incomplete selection, into their mycangia from the walls of the cradles; and (iii) conditions may well be produced in the mycangia of both matured and dispersing beetles whereby only the spores ofAmbrosiella sp. can proliferate.  相似文献   

7.
Ethanol emitted by stressed trees is an olfactory cue used by ambrosia beetles (Coleoptera; Curculionidae; Scolytinae) to locate susceptible hosts to colonize. In addition, ethanol enhances the growth of ambrosia beetle fungal symbionts, improving colonization. Whether host selection and colonization are affected also by the amount of ethanol produced by stressed trees and by tree species is unclear. To investigate these mechanisms, we induced attacks by ambrosia beetles in bolts of eight tree species by coring and filling them with either 5% or 90% ethanol solutions in water. For each ethanol concentration, bolts of the eight different tree species were replicated six times in a randomized complete block design. Entry holes were used as a proxy for host selection whereas gallery development stage was used as a proxy for colonization. Ethanol concentration differentially affected host selection of the three ambrosia beetles that were active during this study. Anisandrus dispar Fabricius preferentially attacked bolts with 90% ethanol concentration, Xylosandrus crassiusculus (Motschulsky) preferentially attacked bolts with 5% ethanol concentration, and Xyleborinus saxesenii (Ratzeburg) attacked bolts irrespective of ethanol concentration. Colonization of X. crassiusculus reflected the same pattern observed for entry holes. The effect of host tree species on host selection was most prominent for Xsaxesenii, while Xcrassiusculus established a higher number of developed galleries in Ostrya carpinifolia Scopoli bolts than on five of the other tested tree species. Our results suggest that ethanol concentration and host tree species may influence ecological niche partitioning among ambrosia beetle species.  相似文献   

8.
The scolytid ambrosia beetles Xyleborus monographus and X. dryographus were investigated to identify their nutritional ambrosia fungi. The examination of the oral mycetangia of the beetles, the specialized organs for fungal transport, revealed the dominant occurrence of Raffaelea montetyi, a fungus that was also predominant in the beetle tunnels in the immediate vicinity of the feeding larvae. R. montetyi was previously known only as the ambrosia fungus of the platypodid ambrosia beetle, Platypus cylindrus. These beetle species inhabit the same habitat, mainly trunks of oaks in the Western Palaeartic. The possibility of an exchange of the symbiotic fungus between the ambrosia beetles within their common breeding place is discussed. Consequently, the previous hypothesis of a species-specific association of a single ambrosia fungus with a single beetle species is questioned. A phylogenetic analysis based on DNA sequences classified R. montetyi within the Ophiostomatales of the ascomycetes. The investigation of conidiogenesis of R. montetyi by SEM supported this taxonomic placement and showed the development of the conidia by annellidic percurrent proliferation, identical to the conidiogenesis reported for many anamorph states of the Ophiostomatales.  相似文献   

9.
Ambrosia beetles, dominant wood degraders in the tropics, create tunnels in dead trees and employ gardens of symbiotic fungi to extract nutrients from wood. Specificity of the beetle–fungus relationship has rarely been examined, and simple vertical transmission of a specific fungal cultivar by each beetle species is often assumed in literature. We report repeated evolution of fungal crop stealing, termed mycocleptism, among ambrosia beetles. The mycocleptic species seek brood galleries of other species, and exploit their established fungal gardens by tunneling through the ambient mycelium‐laden wood. Instead of carrying their own fungal sybmbionts, mycocleptae depend on adopting the fungal assemblages of their host species, as shown by an analysis of fungal DNA from beetle galleries. The evidence for widespread horizontal exchange of fungi between beetles challenges the traditional concept of ambrosia fungi as species‐specific symbionts. Fungus stealing appears to be an evolutionarily successful strategy. It evolved independently in several beetle clades, two of which have radiated, and at least one case was accompanied by a loss of the beetles’ fungus‐transporting organs. We demonstrate this using the first robust phylogeny of one of the world's largest group of ambrosia beetles, Xyleborini.  相似文献   

10.
Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle–fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect’s geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle’s flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle–fungus interaction is discussed.  相似文献   

11.
The laurel wilt pathogen Raffaelea lauricola was hypothesized to have been introduced to the southeastern USA in the mycangium of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia. To test this hypothesis adult X. glabratus were trapped in Taiwan and on Kyushu Island, Japan, in 2009, and dead beetles were sent to USA for isolation of fungal symbionts. Individual X. glabratus were macerated in glass tissue grinders, and the slurry was serially diluted and plated onto malt agar medium amended with cycloheximide, a medium semiselective for Ophiostoma species and their anamorphs, including members of Raffaelea. R. lauricola was isolated from 56 of 85 beetles in Taiwan and 10 of 16 beetles in Japan at up to an estimated 10 000 CFUs per beetle. The next most commonly isolated species was R. ellipticospora, which also has been recovered from X. glabratus trapped in the USA, as were two other fungi isolated from beetles in Taiwan, R. fusca and R. subfusca. Three unidentified Raffaelea spp. and three unidentified Ophiostoma spp. were isolated rarely from X. glabratus collected in Taiwan. Isolations from beetles similarly trapped in Georgia, USA, yielded R. lauricola and R. ellipticospora in numbers similar to those from beetles trapped in Taiwan and Japan. The results support the hypothesis that R. lauricola was introduced into the USA in mycangia of X. glabratus shipped to USA in solid wood packing material from Asia. However differences in the mycangial mycoflora of X. glabratus in Taiwan, Japan and USA suggest that the X. glabratus population established in USA originated in another part of Asia.  相似文献   

12.
Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal-beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetle Xyleborus glabratus has vectored its mutualist partner (but plant pathogenic) fungus, Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearing H. lauricola. Here, we show colonization of the mycangia of the indigenous X. affinis ambrosia beetle by H. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen for H. lauricola as found for the native X. affinis-R. arxii fungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre-oral mycangial pouches of ~100–200 × 25–50 μm/each, with narrow entry channels of 25–50 × 3–10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast-like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching of H. lauricola to other ambrosia beetle species.  相似文献   

13.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.  相似文献   

14.
15.
Cover Caption     
《Insect Science》2019,26(4):NA-NA
The ambrosia beetle, Xylosandrus discolor (Blandford) (Scolytinae: Curculionidae), is common in southeastern Asia. As this beetle bores into wood and reproduces, its only food source is the white fungi (cover the chamber in the figure) which are cultured by the adult. Xylosandrus ambrosia beetles each have a pronotal mycangia (an open void in the body) which transport ambrosia fungi from their natal gallery to their new gallery. Mycangia are dynamic and their morphological changes correspond to the phases of the symbiosis (see pages 732–742). Photo provided by You Li.  相似文献   

16.
In this study, we examined the genetic structures of the ambrosia fungus isolated from mycangia of the scolytine beetle, Xylosandrus germanus to understand their co‐evolutionary relationships. We analyzed datasets of three ambrosia fungus loci (18S rDNA, 28S rDNA, and the β‐tubulin gene) and a X. germanus locus dataset (cytochrome c oxidase subunit 1 (COI) mitochondrial DNA). The ambrosia fungi were separated into three cultural morphptypes, and their haplotypes were distinguished by phylogenetic analysis on the basis of the three loci. The COI phylogenetic analysis revealed three distinct genetic lineages (clades A, B, and C) within X. germanus, each of which corresponded to specific ambrosia fungus cultural morphptypes. The fungal symbiont phylogeny was not concordant with that of the beetle. Our results suggest that X. germanus may be unable to exchange its mycangial fungi, but extraordinary horizontal transmission of symbiotic fungi between the beetle's lineages occurred at least once during the evolutionary history of this symbiosis.  相似文献   

17.
A prevailing paradigm in forest ecology is that wood‐boring beetles facilitate wood decay and carbon cycling, but empirical tests have yielded mixed results. We experimentally determined the effects of wood borers on fungal community assembly and wood decay within pine trunks in the southeastern United States. Pine trunks were made either beetle‐accessible or inaccessible. Fungal communities were compared using culturing and high‐throughput amplicon sequencing (HTAS) of DNA and RNA. Prior to beetle infestation, living pines had diverse fungal endophyte communities. Endophytes were displaced by beetle‐associated fungi in beetle‐accessible trees, whereas some endophytes persisted as saprotrophs in beetle‐excluded trees. Beetles increased fungal diversity several fold. Over forty taxa of Ascomycota were significantly associated with beetles, but beetles were not consistently associated with any known wood‐decaying fungi. Instead, increasing ambrosia beetle infestations caused reduced decay, consistent with previous in vitro experiments that showed beetle‐associated fungi reduce decay rates by competing with decay fungi. No effect of bark‐inhabiting beetles on decay was detected. Platypodines carried significantly more fungal taxa than scolytines. Molecular results were validated by synthetic and biological mock communities and were consistent across methodologies. RNA sequencing confirmed that beetle‐associated fungi were biologically active in the wood. Metabarcode sequencing of the LSU/28S marker recovered important fungal symbionts that were missed by ITS2, though community‐level effects were similar between markers. In contrast to the current paradigm, our results indicate ambrosia beetles introduce diverse fungal communities that do not extensively decay wood, but instead reduce decay rates by competing with wood decay fungi.  相似文献   

18.
Ambrosia fungi are an ecological assemblage cultivated by ambrosia beetles as required nutrient sources. This mutualism evolved in multiple beetle and fungus lineages. Whether convergence in ecology led to convergent metabolism in ambrosia fungi is unknown. We compared the assimilation of 190 carbon sources in five independent pairs of ambrosia fungi and closely related, non-ambrosial species. Ecological convergence versus phylogenetic divergence in carbon source use was tested using variation partitioning. We found no convergence in carbon utilization capacities. Instead, metabolic variation was mostly explained by phylogenetic relationships. In addition, carbon usage in ambrosia fungi was equally diverse as that in non-ambrosial species. Thus, carbon metabolism of each ambrosia fungus is determined by its inherited metabolism, not the transition towards symbiosis. In contrast to other fungus-farming systems of termites and attine ants, the fungal symbionts of ambrosia beetles are functionally diverse, reflecting their independent evolutionary origins.  相似文献   

19.
X‐ray microtomography has been applied successfully to obtain reliable microstructural information of many insect species. Nonetheless, the technique has not been widely applied to ambrosia beetles. The ambrosia beetle Euwallacea interjectus (Blandford) was first recorded as a vector of plant pathogenic fungus Ceratocystis ficicola Kajitani & Masuya, which has caused serious wilt disease in many fig orchards in Japan since 1999. Previous studies of E. interjectus have not described the mycangia (fungus‐storing organ) in detail. In this study, we non‐destructively examined the internal structure of an adult female of E. interjectus through computed microtomography scans. Paired mycangia were observed on typical computed tomography cross‐sections of the head. Each mycangium, ovoid in shape, was located in tissues just posterior to emarginated notch of eyes, adjacent to pharynx. Three dimensions (length × width × depth) of the mycangia were measured on stereography. We confirmed the absence of mycangia in the other body parts, such as elytra, prothorax and coxa of legs.  相似文献   

20.
Non‐native ambrosia beetles (Coleoptera: Curculionidae), especially Xylosandrus compactus (Eichhoff), Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are destructive wood‐boring pests of trees in ornamental nurseries and tree fruit orchards. Previous studies have demonstrated the adults are repelled by verbenone and strongly attracted to ethanol. We tested a “push–pull” semiochemical strategy in Ohio, Virginia and Mississippi using verbenone emitters to “push” beetles away from vulnerable trees and ethanol lures to “pull” them into annihilative traps. Container‐grown trees were flood‐stressed to induce ambrosia beetle attacks and then deployed in the presence or absence of verbenone emitters and a perimeter of ethanol‐baited interception traps to achieve the following treatment combinations: (a) untreated control, (b) verbenone only, (c) ethanol only, and (d) verbenone plus ethanol. Verbenone and ethanol did not interact to reduce attacks on the flooded trees, nor did verbenone alone reduce attacks. The ethanol‐baited traps intercepted enough beetles to reduce attacks on trees deployed in Virginia and Mississippi in 2016, but not in 2017, or in Ohio in 2016. Xylosandrus germanus, X. crassiusculus and both Hypothenemus dissimilis Zimmermann and X. crassiusculus were among the predominant species collected in ethanol‐baited traps deployed in Ohio, Virginia and Mississippi, respectively. Xylosandrus germanus and X. crassiusculus were also the predominant species dissected from trees deployed in Ohio and Virginia, respectively. While the ethanol‐baited traps showed promise for helping to protect trees by intercepting ambrosia beetles, the repellent “push” component (i.e., verbenone) and attractant “pull” component (i.e., ethanol) will need to be further optimized in order to implement a “push–pull” semiochemical strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号