首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The Burkholderia cepacia complex (BCC) is made up of at least 17 species of Gram-negative opportunistic bacterial pathogens that cause fatal infections in patients with cystic fibrosis and chronic granulomatous disease. KS9 (vB_BcenS_KS9), one of a number of temperate phages isolated from BCC species, is a prophage of Burkholderia pyrrocinia LMG 21824. Transmission electron micrographs indicate that KS9 belongs to the family Siphoviridae and exhibits the B1 morphotype. The 39,896-bp KS9 genome, comprised of 50 predicted genes, integrates into the 3′ end of the LMG 21824 GTP cyclohydrolase II open reading frame. The KS9 genome is most similar to uncharacterized prophage elements in the genome of B. cenocepacia PC184 (vB_BcenZ_ PC184), as well as Burkholderia thailandensis phage φE125 and Burkholderia pseudomallei phage φ1026b. Using molecular techniques, we have disrupted KS9 gene 41, which exhibits similarity to genes encoding phage repressors, producing a lytic mutant named KS9c. This phage is incapable of stable lysogeny in either LMG 21824 or B. cenocepacia strain K56-2 and rescues a Galleria mellonella infection model from experimental B. cenocepacia K56-2 infections at relatively low multiplicities of infection. These results readily demonstrate that temperate phages can be genetically engineered to lytic form and that these modified phages can be used to treat bacterial infections in vivo.The Burkholderia cepacia complex (BCC) is a group of at least 17 Gram-negative species, the first identified strains of which were characterized as onion pathogens by W. H. Burkholder (9). Although these bacteria have a number of beneficial activities, including the promotion of crop growth and the degradation of organic pollutants, they have gained notoriety in the last two decades as serious opportunistic pathogens (19, 21, 25). BCC species, particularly B. multivorans and B. cenocepacia, cause serious respiratory infections in patients with cystic fibrosis and chronic granulomatous disease (42, 7). These infections are especially problematic due to symptom severity, the inherent antibiotic resistance of Bcc species, and the potential for rapid spread through susceptible patient populations (25, 23). Difficulties in treating these infections have led to the unfortunate practice of segregating patients, which has high economic, social, and psychological costs (18).Because of these clinical difficulties, interest in the isolation and characterization of Burkholderia-specific bacteriophages (or phages) has increased in recent years, with the apparent potential for using phages as therapeutic agents. Phage therapy is the clinical application of phages to prevent and/or to treat infections, which offers a promising alternative to antibiotic treatment for resistant bacteria such as those of the BCC (33, 39). A second benefit of these phage studies is that they may provide insight into the possible mechanisms of BCC virulence. For example, BcepMu, a transposable phage that specifically infects strains of B. cenocepacia, was found to carry genes similar to exeA, involved in toxin secretion, and mdmB and oafA, two acyltransferases (44). Finally, as Burkholderia phages tend to be underrepresented in comparative studies with respect to Escherichia coli and lactic acid bacteria phages, BCC-specific phage studies provide novel information about a relatively uncharacterized group of viruses.Although phage therapy using temperate virions can be effective (39), there are several reasons why lytic phages are generally considered the most appropriate candidates for use in phage therapy. One of the concerns is that phage integration can lead to lysogenic conversion and enhanced virulence (8). A second concern is that integration of temperate phages results in superinfection immunity due to expression of the phage repressor from the prophage. This protein binds to the operators of infecting phage DNA and represses gene expression, preventing both the initiation of the lytic cycle and the establishment of lysogeny (14). A third concern is that lysogeny affects the kinetics of infection. When a phage infects a cell and undergoes lysogeny instead of entering the lytic cycle, the cell survives, and no new phage particles are released (27). A final problem is that prophages can lead to specialized transduction after induction. Specialized transduction occurs after inexact excision of a prophage from the bacterial chromosome. Bacterial DNA flanking the prophage is packaged into the capsid, and this sequence, which can potentially encode virulence factors, can subsequently recombine into the chromosome of a new host (14).It has been estimated that more than half of tailed phages have evolved a temperate lifestyle, although some estimates have been greater than 90% (1, 22). This situation makes the isolation of naturally lytic phages extremely difficult, particularly when they must have a specific host range that includes clinically relevant bacterial species, such as B. cenocepacia (24). The use of classical genetics to produce lytic phage variants, for example, by plating temperate phages on lysogens and screening for clear plaque vir mutants, is complicated by the fact that such mutations are undefined.This report describes the characterization of KS9 (vB_BcenS_KS9), a prophage of Burkholderia pyrrocinia LMG 21824 (41), and its conversion to a lytic phage through specific molecular modification of gene 41 encoding its putative lytic phase repressor. Preliminary characterization of short sequences by Seed and Dennis (41) indicated that the genome of KS9, whose host range includes Bcc B. cenocepacia K56-2, shows similarity to the genomes of two non-BCC Burkholderia phages: φE125, a prophage of Burkholderia thailandensis E125 (47), and φ1026b, a prophage of Burkholderia pseudomallei 1026b (17). However, no phages closely related to KS9 have been functionally tested to demonstrate that proteins similar to gp41 function as true phage repressors. In the present study, we have used the BCC infection model of Galleria mellonella (40) to assess both the contribution of the KS9 prophage to BCC host virulence and the ability of a genetically modified KS9 to treat B. cenocepacia infections without stably integrating into the host bacterial chromosome as a prophage.  相似文献   

2.
Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery.  相似文献   

3.
Burkholderia cepacia complex (Bcc) is an opportunistic bacterial pathogen that causes chronic infections in people with cystic fibrosis (CF). It is a highly antibiotic resistant organism and Bcc infections are rarely cleared from patients, once they are colonized. The two most clinically relevant species within Bcc are Burkholderia cenocepacia and Burkholderia multivorans. The virulence of these pathogens has not been fully elucidated and the virulence proteins expressed during human infection have not been identified to date. Furthermore, given its antibiotic resistance, prevention of infection with a prophylactic vaccine may represent a better alternative than eradication of an existing infection. We have compared the immunoproteome of two strains each from these two species of Bcc, with the aim of identifying immunogenic proteins which are common to both species. Fourteen immunoreactive proteins were exclusive to both B. cenocepacia strains, while 15 were exclusive to B. multivorans. A total of 15 proteins were immunogenic across both species. DNA-directed RNA polymerase, GroEL, 38kDa porin and elongation factor-Tu were immunoreactive proteins expressed by all four strains examined. Many proteins which were immunoreactive in both species, warrant further investigations in order to aid in the elucidation of the mechanisms of pathogenesis of this difficult organism. In addition, identification of some of these could also allow the development of protective vaccines which may prevent colonisation.  相似文献   

4.
Emergence of antibiotic resistance presents a major setback to global health, and shortage of antibiotic pipelines has created an urgent need for development of alternative therapeutic strategies. Bacteriophage (phage) therapy is considered as a potential approach for treatment of the increasing number of antibiotic-resistant pathogens. Phage-antibiotic synergy (PAS) refers to sublethal concentrations of certain antibiotics that enhance release of progeny phages from bacterial cells. A combination of phages and antibiotics is a promising strategy to reduce the dose of antibiotics and the development of antibiotic resistance during treatment. In this review, we highlight the state-of-the-art advancements of PAS studies, including the analysis of bacterial-killing enhancement, bacterial resistance reduction, and anti-biofilm effect, at both in vitro and in vivo levels. A comprehensive review of the genetic and molecular mechanisms of phage antibiotic synergy is provided, and synthetic biology approaches used to engineer phages, and design novel therapies and diagnostic tools are discussed. In addition, the role of engineered phages in reducing pathogenicity of bacteria is explored.  相似文献   

5.
Cystic fibrosis (CF) patients with Burkholderia cepacia complex (Bcc) pulmonary infections have high morbidity and mortality. The aim of this study was to compare different methods for identification of Bcc species isolated from paediatric CF patients. Oropharyngeal swabs from children with CF were used to obtain isolates of Bcc samples to evaluate six different tests for strain identification. Conventional (CPT) and automatised (APT) phenotypic tests, polymerase chain reaction (PCR)-recA, restriction fragment length polymorphism-recA, recAsequencing, and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) were applied. Bacterial isolates were also tested for antimicrobial susceptibility. PCR-recA analysis showed that 36 out of the 54 isolates were Bcc. Kappa index data indicated almost perfect agreement between CPT and APT, CPT and PCR-recA, and APT and PCR-recA to identify Bcc, and MALDI-TOF and recAsequencing to identify Bcc species. The recAsequencing data and the MALDI-TOF data agreed in 97.2% of the isolates. Based on recA sequencing, the most common species identified were Burkholderia cenocepacia IIIA (33.4%),Burkholderia vietnamiensis (30.6%), B. cenocepaciaIIIB (27.8%), Burkholderia multivorans (5.5%), and B. cepacia (2.7%). MALDI-TOF proved to be a useful tool for identification of Bcc species obtained from CF patients, although it was not able to identify B. cenocepacia subtypes.  相似文献   

6.
The Burkholderia cepacia complex (Bcc) is a group of 17 Gram-negative predominantly environmental bacterial species that cause potentially fatal opportunistic infections in cystic fibrosis (CF) patients. Although its prevalence in these individuals is lower than that of Staphylococcus aureus and Pseudomonas aeruginosa , the Bcc remains a serious problem in the CF community because of the pathogenicity, transmissibility, and inherent antibiotic resistance of these organisms. An alternative treatment for Bcc infections that is currently being developed is phage therapy, the clinical use of viruses that infect bacteria. To assess the suitability of individual phage isolates for therapeutic use, the complete genome sequences of a panel of Bcc-specific phages were determined and analyzed. These sequences encode a broad range of proteins with a gradient of relatedness to phage and bacterial gene products from Burkholderia and other genera. The majority of these phages were found not to encode virulence factors, and despite their predominantly temperate nature, a proof-of-principle experiment has shown that they may be modified to a lytic form. Both the genomic characterization and subsequent engineering of Bcc-specific phages are fundamental to the development of an effective phage therapy strategy for these bacteria.  相似文献   

7.
8.
The bacterium Burkholderia cenocepacia is pathogenic for sufferers from cystic fibrosis (CF) and certain immunocompromised conditions. The B. cenocepacia strain most frequently isolated from CF patients, and which serves as the reference for CF epidemiology, is J2315. The J2315 genome is split into three chromosomes and one plasmid. The strain was sequenced several years ago, and its annotation has been released recently. This information should allow genetic experimentation with J2315, but two major impediments appear: the poor potential of J2315 to act as a recipient in transformation and conjugation and the high level of resistance it mounts to nearly all antibiotics. Here, we describe modifications to the standard electroporation procedure that allow routine transformation of J2315 by DNA. In addition, we show that deletion of an efflux pump gene and addition of spermine to the medium enhance the sensitivity of J2315 to certain commonly used antibiotics and so allow a wider range of antibiotic resistance genes to be used for selection.Burkholderia cenocepacia is part of the Burkholderia cepacia complex (Bcc), a group of closely related bacteria of soil, water, and roots (41) recently updated to at least 15 related species (42). Bcc displays many interesting features (see reference 27 for a review). Originally discovered as responsible for soft onion rot (3), Bcc species also interact beneficently with plants (see reference 34 for a review) and may degrade pollutants such as phthalate or the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5,-T) (25, 33). But it is the emergence of Bcc as an opportunistic pathogen of people suffering from cystic fibrosis (CF) (19) and immunocompromizing conditions that has drawn most attention to these bacteria. Among Bcc species, Burkholderia multivorans and B. cenocepacia are the most prevalent in the epidemiology of CF. In particular, strains of the ET12 lineage of B. cenocepacia were responsible for a major transcontinental epidemic among CF patients in the 1990s (20), an outbreak aggravated by the high levels of resistance to nearly all antibiotics that characterizes Bcc. Species of the Bcc have large genomes (7 to 9 Mb) composed of two or three chromosomes and one or more plasmids, an unusual genomic organization among bacteria. The first Bcc genome to be sequenced was that of B. cenocepacia J2315 (also known as LMG16656), the type strain of the ET12 lineage and the reference strain for CF epidemiology; the sequence was completed and made available by the Wellcome Trust Sanger Institute in 2003. It revealed three chromosomes of 3.9, 3.2, and 0.9 Mb and a plasmid of 93 kb. The annotation of this genome was released recently (15).The pathogenicity and multipartite genome of B. cenocepacia make it an important subject for both practical and fundamental study. Genetic modification is essential to the success of many such investigations. Unfortunately, J2315 throws up major barriers to genetic manipulation. Standard electrotransformation techniques are ineffective with this strain, as also found elsewhere (26). Conjugal introduction of DNA has proved unreliable despite adaptations (7) that have enabled occasional successes with B. cenocepacia species (9, 40) including J2315 (39) (see also Results below). Besides, the natural resistance of J2315 to antibiotics, high even on the scale of the generally extensive resistance of B. cenocepacia species (31), severely restricts the use of antibiotic resistance in genetic selections. Circumventing these problems by resorting to a proxy strain, B. cenocepacia K56-2, that has not been sequenced and is more permissive to gene transfer (26, 17, 32, 9) runs the risk that results will be of uncertain relevance to J2315.In the context of our general aim to decipher the role of the four replicon-specific ParABS systems of J2315 (6), we have sought to overcome these obstacles. We report here the reproducible electrotransformation of J2315, and we analyze factors that improve its efficiency. We report also our isolation of a J2315 derivative with reduced antibiotic resistance and the broadened selection possibilities this offers. Detailed protocols are provided which should facilitate studies of this pathogen.  相似文献   

9.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in water bodies of West Lake in China. A total of 670 bacterial isolates were recovered on selective media. Out of them, 39.6% (265 isolates) were assigned to the following species: Burkholderia multivorans, Burkholderia cenocepacia recA lineage IIIA, IIIB, Burkholderia stabilis, Burkholderia vietnamiensis, and Burkholderia seminalis while B. cenocepacia is documented as a dominant Bcc species in water of West Lake. In addition, all Bcc isolates tested were PCR negative for the cblA and esmR transmissibility marker genes except B. cenocepacia IIIB A8 which was positive for esmR genelater. The present study raises great concerns on the role of West Lake as a “reservoir” for potential Bcc pathogenic strains.  相似文献   

10.
A survey of Burkholderia cepacia complex (Bcc) species was conducted in sputum from cystic fibrosis (CF) patients in China. One hundred and four bacterial isolates were recovered on B. cepacia selective agar and 42 of them were assigned to Bcc by PCR assays. The species composition of the Bcc isolates from CF sputum was analyzed by a combination of recA-restriction fragment length polymorphism assays, species-specific PCR tests and recA gene sequencing. The results revealed that the 42 Bcc isolates belong to B. cepacia, B. cenocepacia and B. contaminans while predominant Bcc species was B. cenocepacia. This is the first report of B. contaminans from CF sputum in China. In addition, results from this study showed that chitosan solution at 10, 25, 50 and 100 μg/ml markedly inhibited the growth of the 16 representative isolates from the three different Bcc species, which indicated that chitosan was a potential bactericide against Bcc bacteria.  相似文献   

11.
The metabolically versatile Burkholderia cepacia complex (Bcc) occupies a variety of niches, including the plant rhizosphere and the cystic fibrosis lung (where it is often fatal to the patient). Bcc members have multipartite genomes, of which the third replicon, pC3 (previously chromosome 3), has been shown to be a nonessential megaplasmid which confers virulence and both antifungal and proteolytic activity on several strains. In this study, pC3 curing was extended to cover strains of 16 of the 17 members of the Bcc, and the phenotypes conferred by pC3 were determined. B. cenocepacia strains H111, MCO-3, and HI2424 were previously cured of pC3; however, this had not proved possible in the epidemic strain K56-2. Here, we investigated the mechanism of this unexpected stability and found that efficient toxin-antitoxin systems are responsible for maintaining pC3 of strain K56-2. Identification of these systems allowed neutralization of the toxins and the subsequent deletion of K56-2pC3. The cured strain was found to exhibit reduced antifungal activity and was attenuated in both the zebrafish and the Caenorhabditis elegans model of infection. We used a PCR screening method to examine the prevalence of pC3 within 110 Bcc isolates and found that this replicon was absent in only four cases, suggesting evolutionary fixation. It is shown that plasmid pC3 increases the resistance of B. cenocepacia H111 to various stresses (oxidative, osmotic, high-temperature, and chlorhexidine-induced stresses), explaining the prevalence of this replicon within the Bcc.  相似文献   

12.
Burkholderia cenocepacia is a virulent species belonging to the Burkholderia cepacia complex (Bcc) and one of the most problematic agents of chronic lung infection in cystic fibrosis patients. B. cenocepacia possesses a large panel of virulence traits that include trimeric autotransporter adhesins (TAAs). Such proteins are obligate homotrimeric anchored in the outer membrane. They are players in the adhesion events that occur between bacteria and biotic/abiotic surfaces. In this study, we constructed two insertional-mutants for TAA bcaC and Histidine kinase (HK) BCAM0218 genes, which are clustered together within the B. cenocepacia K56-2 TAA cluster. The bcaC-mutant affects B. cenocepacia adhesion to extracellular matrix proteins and red blood cells hemagglutination. BcaC contributes to enhancing B. cenocepacia K56-2 adhesion to bronchial epithelial cells. The expression of bcaC seems to affect biofilm formation negatively. Due to a BCAM0218 disruption, the bcaC expression increases significantly, indicating that they are functionally linked. The overexpression of bcaC in the BCAM0218-mutant background rescues at least part of the BcaC functions. Altogether, these findings reveal the multifunctionality of BcaC as a novel B. cenocepacia K56-2 virulence factor and postulate the involvement of a sensor HK (BCAM0218) in the control of this TAA gene.  相似文献   

13.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   

14.
The antimicrobial activities of garlic and other plant alliums are primarily based on allicin, a thiosulphinate present in crushed garlic bulbs. We set out to determine if pure allicin and aqueous garlic extracts (AGE) exhibit antimicrobial properties against the Burkholderia cepacia complex (Bcc), the major bacterial phytopathogen for alliums and an intrinsically multiresistant and life-threatening human pathogen. We prepared an AGE from commercial garlic bulbs and used HPLC to quantify the amount of allicin therein using an aqueous allicin standard (AAS). Initially we determined the minimum inhibitory concentrations (MICs) of the AGE against 38 Bcc isolates; these MICs ranged from 0.5 to 3% (v/v). The antimicrobial activity of pure allicin (AAS) was confirmed by MIC and minimum bactericidal concentration (MBC) assays against a smaller panel of five Bcc isolates; these included three representative strains of the most clinically important species, B. cenocepacia. Time kill assays, in the presence of ten times MIC, showed that the bactericidal activity of AGE and AAS against B. cenocepacia C6433 correlated with the concentration of allicin. We also used protein mass spectrometry analysis to begin to investigate the possible molecular mechanisms of allicin with a recombinant form of a thiol-dependent peroxiredoxin (BCP, Prx) from B. cenocepacia. This revealed that AAS and AGE modifies an essential BCP catalytic cysteine residue and suggests a role for allicin as a general electrophilic reagent that targets protein thiols. To our knowledge, we report the first evidence that allicin and allicin-containing garlic extracts possess inhibitory and bactericidal activities against the Bcc. Present therapeutic options against these life-threatening pathogens are limited; thus, allicin-containing compounds merit investigation as adjuncts to existing antibiotics.  相似文献   

15.

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7 %) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7–49.5 % identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin, and spanins) and shows 29–98 % homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4–10 and are stable at 60 °C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest that the AP3 phage is a promising potent agent against bacteria belonging to the most common B. cenocepacia IIIA lineage strains.

  相似文献   

16.
Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important posttranslational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF and the low-molecular-weight protein tyrosine phosphatases BCAM0208, BceD, and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208, and BceD contribute to biofilm formation, while BCAL2200 is required for growth under nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low-molecular-weight protein tyrosine phosphatase genes resulted in the attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larval infection model. Experimental evidence indicates that BCAM1331 displays reduced tyrosine autophosphorylation activity compared to that of BceF. With the artificial substrate p-nitrophenyl phosphate, the phosphatase activities of the three low-molecular-weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 became tyrosine phosphorylated in vivo and catalyzed its autodephosphorylation. Together, our data suggest that despite having similar biochemical activities, low-molecular-weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.  相似文献   

17.
Although the multiplication of bacteriophages (phages) has a substantial impact on the biosphere, comparatively little is known about how the external environment affects phage production. Here we report that sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacterial cell's production of some virulent phage. For example, a low dosage of cefotaxime, a cephalosporin, increased an uropathogenic Escherichia coli strain's production of the phage PhiMFP by more than 7-fold. We name this phenomenon Phage-Antibiotic Synergy (PAS). A related effect was observed in diverse host-phage systems, including the T4-like phages, with beta-lactam and quinolone antibiotics, as well as mitomycin C. A common characteristic of these antibiotics is that they inhibit bacterial cell division and trigger the SOS system. We therefore examined the PAS effect within the context of the bacterial SOS and filamentation responses. We found that the PAS effect appears SOS-independent and is primarily a consequence of cellular filamentation; it is mimicked by cells that constitutively filament. The fact that completely unrelated phages manifest this phenomenon suggests that it confers an important and general advantage to the phages.  相似文献   

18.
The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.  相似文献   

19.
Burkholderia cenocepacia, Burkholderia ambifaria, and Burkholderia pyrrocinia are the Burkholderia cepacia complex (Bcc) species most frequently associated with roots of crop plants. To investigate the ecophysiological diversity of these species, metabolic profiling of maize rhizosphere isolates was carried out by means of the Biolog system, using GN2 and SFN2 plates and different parameters related to optical density (OD). The metabolic profiles produced by the SFN2 and GN2 plates were identical, but the SFN2's narrower range of OD values and significantly longer reaction times made these plates less suitable for differentiation of isolates. Principal component analysis of maximum OD (ODM) and maximum substrate oxidation rate (μM) data generated by GN2 plates allowed the selection of a reduced number of carbon sources. Statistical analysis of ODM values highlighted marked differences between the metabolic profiles of B. cenocepacia and B. ambifaria, whereas metabolic profiles of B. pyrrocinia clustered very often with those of B. cenocepacia. Analysis of the μM parameter resulted in a slightly lower differentiation among the three Bcc species and a higher metabolic diversity within the single species, in particular within B. cenocepacia. Finally, B. cenocepacia and B. pyrrocinia showed generally higher oxidation rates than B. ambifaria on those GN2 substrates that commonly occur in maize root exudates.  相似文献   

20.

Background  

The Double-Layer Agar (DLA) technique is extensively used in phage research to enumerate and identify phages and to isolate mutants and new phages. Many phages form large and well-defined plaques that are easily observed so that they can be enumerated when plated by the DLA technique. However, some give rise to small and turbid plaques that are very difficult to detect and count. To overcome these problems, some authors have suggested the use of dyes to improve the contrast between the plaques and the turbid host lawns. It has been reported that some antibiotics stimulate bacteria to produce phages, resulting in an increase in final titer. Thus, antibiotics might contribute to increasing plaque size in solid media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号